Sciact
  • EN
  • RU

On the solvability of the inverse problems of parameter recovery in elliptic equations Full article

Journal Математические заметки СВФУ (Mathematical Notes of NEFU)
ISSN: 2411-9326 , E-ISSN: 2587-876X
Output data Year: 2020, Volume: 27, Number: 4, Pages: 14-29 Pages count : 16 DOI: 10.25587/SVFU.2020.57.53.002
Tags Elliptic equation; Existence; Final-integral overdetermination condition; Regular solution; Uniqueness; Unknown coefficient
Authors Kozhanov A.I. 1,2
Affiliations
1 Sobolev Institute of Mathematics, 4 Koptyug Avenue, Novosibirsk, 630090, Russian Federation
2 Novosibirsk State University, 1 Pirogov Street, Novosibirsk, 630090, Russian Federation

Abstract: We study solvability of the inverse problems of finding, alongside the solution u(x, t), the positive parameter a in the differential equations utt + αΔu - Βu = f(x, t), αutt + Δu - Βu = f(x, t) where t ε (0, T), x = (x1,…, xn) ε Ω ⊂ Rn, and Δ the Laplace operator in variables x1,…, xn. As a complement to the boundary conditions defining a well-posed boundary value problem for elliptic equations, we use the conditions of the linear final integral overdetermination. We prove the existence and uniqueness theorems for regular solutions, those having all generalized in the S. L. Sobolev sense derivatives in the equation. © 2020 A. I. Kozhanov.
Cite: Kozhanov A.I.
On the solvability of the inverse problems of parameter recovery in elliptic equations
Математические заметки СВФУ (Mathematical Notes of NEFU). 2020. V.27. N4. P.14-29. DOI: 10.25587/SVFU.2020.57.53.002 Scopus OpenAlex
Identifiers:
Scopus: 2-s2.0-85101552593
OpenAlex: W3164782712
Citing:
DB Citing
Scopus 3
OpenAlex 1
Altmetrics: