Универсальные локально-линейные ядерные оценки для производной регрессионной функции Full article
| Journal |
Сибирские электронные математические известия (Siberian Electronic Mathematical Reports)
, E-ISSN: 1813-3304 |
||
|---|---|---|---|
| Output data | Year: 2025, Volume: 22, Number: 2, Pages: 1382-1393 Pages count : 12 DOI: 10.33048/semi.2025.22.083 | ||
| Tags | nonparametric regression, nonparametric derivative estimators, kernel estimation, universal local linear estimator, consistency, fixed design, random design. | ||
| Authors |
|
||
| Affiliations |
|
Funding (1)
| 1 | Sobolev Institute of Mathematics | FWNF-2024-0001 |
Abstract:
The paper considers the problem of nonparametric regression, which consists in estimating the derivative of the regression function, when the values of the regression function are observed with an accuracy of random errors in some known set of f ixed or random points (regressors). The solution of this problem, including methods of kernel smoothing, is devoted to an extensive literature. In the paper, the consistency of a new class of locally linear estimators is studied, while a more general condition on the regressors is used. With respect to the regressors, it is only required that they asymptotically densely fill the domain of the regression function. This condition includes both the case of fixed regressors, without the requirement of regularity, and the situation of random regressors, but without the assumption of some form of weak dependence of quantities or the fulfillment of ergodic properties.
Cite:
Петренко С.С.
, Линке Ю.Ю.
Универсальные локально-линейные ядерные оценки для производной регрессионной функции
Сибирские электронные математические известия (Siberian Electronic Mathematical Reports). 2025. Т.22. №2. С.1382-1393. DOI: 10.33048/semi.2025.22.083 Scopus
Универсальные локально-линейные ядерные оценки для производной регрессионной функции
Сибирские электронные математические известия (Siberian Electronic Mathematical Reports). 2025. Т.22. №2. С.1382-1393. DOI: 10.33048/semi.2025.22.083 Scopus
Dates:
| Submitted: | Jun 21, 2025 |
| Published print: | Nov 25, 2025 |
| Published online: | Nov 25, 2025 |
Identifiers:
| Scopus: | 2-s2.0-105024879345 |
Citing:
Пока нет цитирований