Sciact
  • EN
  • RU

Deza Cayley graphs from difference sets Full article

Journal Труды Института математики и механики УрО РАН (Trudy Instituta Matematiki i Mekhaniki UrO RAN)
ISSN: 0134-4889 , E-ISSN: 2658-4786
Output data Year: 2025, Volume: 31, Number: 4, Pages: 281-289 Pages count : 9 DOI: 10.21538/0134-4889-2025-31-4-281-289
Tags Deza graphs, Cayley graphs, difference sets.
Authors Ryabov G.K. 1
Affiliations
1 Sobolev Institute of Mathematics of the Siberian Branch of the Russian Academy of Sciences

Funding (1)

1 Sobolev Institute of Mathematics FWNF-2022-0017

Abstract: Aregular graph Γ is called a Deza graph if there exist nonnegative integers a and b such that any two distinct vertices of Γ have either a or b common neighbors. A subset R of a group G is called a relative difference set in G if there exist a subgroup N of G and a nonnegative integer λ such that every element of G\N has exactly λ representations in the form g1g−1 2 ,where g1,g2 ∈ R, and no non-identity element of N has such a representation. If N is trivial, then R is defined to be a difference set. In the present paper, we provide several new constructions of Deza Cayley graphs over groups having a generalized dihedral subgroup. These constructions are based on usage of (relative) difference sets.
Cite: Ryabov G.K.
Deza Cayley graphs from difference sets
Труды Института математики и механики УрО РАН (Trudy Instituta Matematiki i Mekhaniki UrO RAN). 2025. Т.31. №4. С.281-289. DOI: 10.21538/0134-4889-2025-31-4-281-289 РИНЦ OpenAlex
Dates:
Submitted: Aug 10, 2025
Accepted: Sep 8, 2025
Published print: Nov 25, 2025
Published online: Nov 25, 2025
Identifiers:
Elibrary: 84079634
OpenAlex: W7106708715
Citing: Пока нет цитирований
Altmetrics: