Sciact
  • EN
  • RU

Нелокальные задачи для обобщенного уравнения Буссинеска-Лява Full article

Journal Сибирские электронные математические известия (Siberian Electronic Mathematical Reports)
, E-ISSN: 1813-3304
Output data Year: 2025, Volume: 22, Number: 2,
Tags generalized Boussinesq–Love equation, nonlocal boundary value problems, generalized Samarskii–Ionkin conditions, regular solutions, existence, uniqueness.
Authors Кожанов А.И. 1 , Ван Минь 2
Affiliations
1 Институт математики им. С.Л. Соболева
2 Новосибирский государственный университет

Funding (1)

1 Sobolev Institute of Mathematics FWNF-2022-0008

Abstract: This work investigates the solvability of nonlocal boundary value problems for the generalized Boussinesq-Love differential equation in anisotropic S.L. Sobolev spaces. A distinctive feature of the studied problems is that their nonlocal conditions represent SamarskiiIonkin type conditions with respect to the temporal (distinguished) variable. The main objective of this work is to prove existence and uniqueness theorems for regular solutions of the considered problems—specifically, solutions possessing all generalized derivatives in the S.L. Sobolev sense that appear in the corresponding equation.
Cite: Кожанов А.И. , Ван М.
Нелокальные задачи для обобщенного уравнения Буссинеска-Лява
Сибирские электронные математические известия (Siberian Electronic Mathematical Reports). 2025. Т.22. №2.
Identifiers: No identifiers
Citing: Пока нет цитирований