Sciact
  • EN
  • RU

Об одном свойстве минимальных формул, реализующих линейные булевы функции от 5, 6 и 7 переменных Full article

Journal Сибирские электронные математические известия (Siberian Electronic Mathematical Reports)
, E-ISSN: 1813-3304
Output data Year: 2025, Volume: 22, Number: 2, Pages: 1687–1716 Pages count : DOI: 10.33048/semi.2025.22.103
Tags boolean functions, π-circuits, normalized formulas, lower bounds on complexity, formula representations, Π-partitions.
Authors Рычков К.Л. 1
Affiliations
1 Институт математики им. С.Л. Соболева СО РАН

Funding (1)

1 Sobolev Institute of Mathematics FWNF-2022-0017

Abstract: We consider formulas in a basis consisting of disjunction, conjunction, and negation. It is established that in each minimal (having the smallest possible number of occurrences of variables) formula that calculates a linear Boolean function depending on 5, 6 or 7 variables, at least one of the variables is included at least 8 times. The result focuses on the description of classes of minimal formulas for these functions and is an important intermediate step in this description. But it also has an independent meaning, since it actually represents another way (perhaps the most simple and transparent) to obtain accurate lower estimates of the formula complexity of the specified functions.
Cite: Рычков К.Л.
Об одном свойстве минимальных формул, реализующих линейные булевы функции от 5, 6 и 7 переменных
Сибирские электронные математические известия (Siberian Electronic Mathematical Reports). 2025. Т.22. №2. С.1687–1716. DOI: 10.33048/semi.2025.22.103 Scopus
Dates:
Submitted: Aug 1, 2025
Published print: Dec 31, 2025
Published online: Dec 31, 2025
Identifiers:
Scopus: 2-s2.0-105027540776
Citing: Пока нет цитирований
Altmetrics: