Notes on the Duflo-Serganova Functor in Positive Characteristic Full article
| Journal |
Transformation Groups
ISSN: 1083-4362 , E-ISSN: 1531-586X |
||
|---|---|---|---|
| Output data | Year: 2026, DOI: 10.1007/s00031-026-09944-4 | ||
| Authors |
|
||
| Affiliations |
|
Funding (1)
| 1 | Омский филиал ФГБУН «Институт математики им. С.Л. Соболева СО РАН». | FWNF-2022-0003 |
Abstract:
We develop a fragment of the theory of Duflo-Serganova functor over a field of odd characteristic. We elaborate a method of computing the symmetry supergroup G x of this functor, recently introduced by A.Sherman, for a wide class of supergroups G, and apply it to the case when G is GL(m|n) or Q(n), and a square zero odd element x ∈ Lie(G) has minimal or maximal rank. For any quasi-reductive supergroup G, which has a pair of specific parabolic supersubgroups, we prove a criterion of injectivity of a G-supermodule, involving vanishing of Duflo-Serganova functor on it.
Cite:
Zubkov A.
Notes on the Duflo-Serganova Functor in Positive Characteristic
Transformation Groups. 2026. DOI: 10.1007/s00031-026-09944-4 WOS Scopus OpenAlex
Notes on the Duflo-Serganova Functor in Positive Characteristic
Transformation Groups. 2026. DOI: 10.1007/s00031-026-09944-4 WOS Scopus OpenAlex
Dates:
| Submitted: | May 8, 2025 |
| Accepted: | Jan 2, 2026 |
| Published online: | Jan 24, 2026 |
Identifiers:
| Web of science: | WOS:001669707200001 |
| Scopus: | 2-s2.0-105028611611 |
| OpenAlex: | W7125612996 |
Citing:
Пока нет цитирований