Sciact
  • EN
  • RU

The Maximum Pointwise Rate of Convergence in Birkhoff’s Ergodic Theorem Full article

Journal Journal of Mathematical Sciences (United States)
ISSN: 1072-3374 , E-ISSN: 1573-8795
Output data Year: 2021, Volume: 255, Number: 2, Pages: 119-123 Pages count : 5 DOI: 10.1007/s10958-021-05354-x
Authors Kachurovskii A.G. 1 , Podvigin I.V. 1,2 , Svishchev A.A. 2
Affiliations
1 Sobolev Institute of Mathematics, Novosibirsk, Russian Federation
2 Sobolev Institute of Mathematics and Novosibirsk State University, Novosibirsk, Russian Federation

Abstract: A criterion for the maximum possible pointwise convergence rate in Birkhoff’s ergodic theorem for ergodic semiflows in a Lebesgue space is obtained. It is proved that higher rates of convergence in this theorem are impossible.
Cite: Kachurovskii A.G. , Podvigin I.V. , Svishchev A.A.
The Maximum Pointwise Rate of Convergence in Birkhoff’s Ergodic Theorem
Journal of Mathematical Sciences (United States). 2021. V.255. N2. P.119-123. DOI: 10.1007/s10958-021-05354-x Scopus РИНЦ OpenAlex
Original: Качуровский А.Г. , Подвигин И.В. , Свищёв А.А.
Максимальная поточечная скорость сходимости в эргодической теореме Биркгофа
Записки научных семинаров ПОМИ. 2020. Т.498. С.18-25. РИНЦ MathNet
Identifiers:
Scopus: 2-s2.0-85104783195
Elibrary: 46023522
OpenAlex: W3156885742
Citing:
DB Citing
Scopus 5
Elibrary 2
OpenAlex 3
Altmetrics: