Injectivity almost everywhere andmappings with finite distortion in nonlinear elasticity Full article
Journal |
Calculus of Variations and Partial Differential Equations
ISSN: 0944-2669 , E-ISSN: 1432-0835 |
||||||
---|---|---|---|---|---|---|---|
Output data | Year: 2020, Volume: 59, Article number : 17, Pages count : 25 DOI: 10.1007/s00526-019-1671-4 | ||||||
Tags | 30C65 · 46E35 · 74B20 | ||||||
Authors |
|
||||||
Affiliations |
|
Abstract:
We show that a sufficient condition for the weak limit of a sequence of W1q-homeomorphisms
with finite distortion to be almost everywhere injective for q ≥ n−1, can be stated by means
of composition operators. Applying this result, we study nonlinear elasticity problems with
respect to these new classes of mappings. Furthermore, we impose loose growth conditions
on the stored-energy function for the class of W1n -homeomorphisms with finite distortion and
integrable inner as well as outer distortion coefficients.
Cite:
Vodopyanov S.K.
, Molchanova A.
Injectivity almost everywhere andmappings with finite distortion in nonlinear elasticity
Calculus of Variations and Partial Differential Equations. 2020. V.59. 17 :1-25. DOI: 10.1007/s00526-019-1671-4 WOS Scopus OpenAlex
Injectivity almost everywhere andmappings with finite distortion in nonlinear elasticity
Calculus of Variations and Partial Differential Equations. 2020. V.59. 17 :1-25. DOI: 10.1007/s00526-019-1671-4 WOS Scopus OpenAlex
Dates:
Published online: | Dec 4, 2019 |
Identifiers:
Web of science: | WOS:000516541000001 |
Scopus: | 2-s2.0-85076111097 |
OpenAlex: | W2991753915 |