Sciact
  • EN
  • RU

The Multiplicity Problem for Periodic Orbits of Magnetic Flows on the 2-Sphere Full article

Journal Advanced Nonlinear Studies
ISSN: 1536-1365 , E-ISSN: 2169-0375
Output data Year: 2017, Volume: 17, Pages: 17-30 Pages count : 14 DOI: 10.1515/ANS-2016-6003
Tags Hamiltonian Systems; Magnetic Flows; Mañé Critical Values; Periodic Orbits; Tonelli Lagrangians
Authors Abbondandolo A. 1 , Asselle L. 1 , Benedetti G. 2 , Mazzucchelli M. 3 , Taimanov Iskander Asanovich 4,5
Affiliations
1 Ruhr University Bochum
2 Leipzig University
3 École Normale Supérieure de Lyon
4 Sobolev Institute of Mathematics
5 Novosibirsk State University

Abstract: We consider magnetic Tonelli Hamiltonian systems on the cotangent bundle of the 2-sphere, where the magnetic form is not necessarily exact. It is known that, on very low and on high energy levels, these systems may have only finitely many periodic orbits. Our main result asserts that almost all energy levels in a precisely characterized intermediate range (e_0,e_1) possess infinitely many periodic orbits. Such a range of energies is non-empty, for instance, in the physically relevant case where the Tonelli Lagrangian is a kinetic energy and the magnetic form is oscillating (in which case, e_0=0 is the minimal energy of the system).
Cite: Abbondandolo A. , Asselle L. , Benedetti G. , Mazzucchelli M. , Taimanov I.A.
The Multiplicity Problem for Periodic Orbits of Magnetic Flows on the 2-Sphere
Advanced Nonlinear Studies. 2017. V.17. P.17-30. DOI: 10.1515/ANS-2016-6003 WOS Scopus OpenAlex
Dates:
Submitted: Aug 12, 2016
Accepted: Nov 4, 2016
Published print: Dec 1, 2016
Published online: Feb 1, 2017
Identifiers:
Web of science: WOS:000398552700003
Scopus: 2-s2.0-85011634303
OpenAlex: W2526672374
Citing:
DB Citing
Web of science 8
Scopus 11
OpenAlex 12
Altmetrics: