Sciact
  • EN
  • RU

Asymptotic properties of one-step M-estimators Full article

Journal Communications in Statistics - Theory and Methods
ISSN: 0361-0926 , E-ISSN: 1532-415X
Output data Year: 2019, Volume: 48, Number: 16, Pages: 4096-4118 Pages count : 23 DOI: 10.1080/03610926.2018.1487982
Tags asymptotic normality; initial estimator; nonlinear regression; One-step M-estimator
Authors Linke Y. 1,2
Affiliations
1 Sobolev Institute of Mathematics, Novosibirsk, Russian Federation
2 Novosibirsk State University, Novosibirsk, Russian Federation

Abstract: We study the asymptotic behavior of one-step M-estimators based on not necessarily independent identically distributed observations. In particular, we find conditions for asymptotic normality of these estimators. Asymptotic normality of one-step M-estimators is proven under a wide spectrum of constraints on the exactness of initial estimators. We discuss the question of minimal restrictions on the exactness of initial estimators. We also discuss the asymptotic behavior of the solution to an M-equation closest to the parameter under consideration. As an application, we consider some examples of one-step approximation of quasi-likelihood estimators in nonlinear regression. © 2018, © 2018 Taylor & Francis Group, LLC.
Cite: Linke Y.
Asymptotic properties of one-step M-estimators
Communications in Statistics - Theory and Methods. 2019. V.48. N16. P.4096-4118. DOI: 10.1080/03610926.2018.1487982 WOS Scopus OpenAlex
Identifiers:
Web of science: WOS:000473519800011
Scopus: 2-s2.0-85057328032
OpenAlex: W2900117068
Citing:
DB Citing
Scopus 12
OpenAlex 15
Web of science 7
Altmetrics: