Sciact
  • EN
  • RU

Recovering a Time-Dependent Diffusion Coefficient from Nonlocal Data Full article

Journal Numerical Analysis and Applications
ISSN: 1995-4239
Output data Year: 2018, Volume: 11, Number: 1, Pages: 38-44 Pages count : 7 DOI: 10.1134/S1995423918010056
Tags nonlocal condition; numerical methods; parabolic equation; time-dependent coefficient inverse problem
Authors Kabanikhin S.I. 1,2,3 , Shishlenin M.A. 1,2,3
Affiliations
1 Institute of Computational Mathematics and Mathematical Geophysics, Siberian Branch, Russian Academy of Sciences, pr. Akad. Lavrent’eva 6, Novosibirsk, 630090, Russian Federation
2 Sobolev Institute of Mathematics, pr. Akad. Koptyuga 4, Novosibirsk, 630090, Russian Federation
3 Novosibirsk State University, ul. Pirogova 1, Novosibirsk, 630090, Russian Federation

Abstract: In this paper, an inverse problem of recovering a leading time-dependent coefficient from nonlocal additional information is investigated. To approximately solve the nonlinear inverse problems, we propose a gradient method of minimizing an objective functional. A comparative analysis with a method based on a linearized approximation scheme with respect to time is performed. The results of numerical calculations are presented. © 2018, Pleiades Publishing, Ltd.
Cite: Kabanikhin S.I. , Shishlenin M.A.
Recovering a Time-Dependent Diffusion Coefficient from Nonlocal Data
Numerical Analysis and Applications. 2018. V.11. N1. P.38-44. DOI: 10.1134/S1995423918010056 WOS Scopus OpenAlex
Identifiers:
Web of science: WOS:000427431900004
Scopus: 2-s2.0-85043690732
OpenAlex: W2794068471
Citing:
DB Citing
Scopus 24
OpenAlex 24
Web of science 21
Altmetrics: