Sciact
  • EN
  • RU

A refined version of the integro-local Stone theorem Full article

Journal Statistics and Probability Letters
ISSN: 0167-7152
Output data Year: 2017, Volume: 123, Pages: 153-159 Pages count : 7 DOI: 10.1016/j.spl.2016.12.004
Tags Asymptotic expansion; Central limit theorem; Independent identically distributed random variables; Integro-local Stone theorem; Random walk
Authors Borovkov Alexander A. 1 , Borovkov Konstantin A. 2
Affiliations
1 Sobolev Institute of Mathematics
2 The University of Melbourne

Abstract: Let X,X1,X2,… be a sequence of non-lattice i.i.d. random variables with EX=0,EX=1, and let Sn:=X1+⋯+Xn, n≥1. We refine Stone's integro-local theorem by deriving the first term in the asymptotic expansion, as n→∞, for the probability P(Sn∈[x,x+Δ)), x∈R,Δ>0, and establishing uniform in x and Δ bounds for the remainder term, under the assumption that the distribution of X satisfies Cramér's strong non-lattice condition and E|X|r<∞ for some r≥3. © 2016 Elsevier B.V.
Cite: Borovkov A.A. , Borovkov K.A.
A refined version of the integro-local Stone theorem
Statistics and Probability Letters. 2017. V.123. P.153-159. DOI: 10.1016/j.spl.2016.12.004 WOS Scopus OpenAlex
Dates:
Published print: Apr 1, 2017
Identifiers:
Web of science: WOS:000393266200021
Scopus: 2-s2.0-85007589314
OpenAlex: W2485183274
Citing:
DB Citing
Scopus 1
OpenAlex 2
Web of science 1
Altmetrics: