Sciact
  • EN
  • RU

Constructing initial estimators in one-step estimation procedures of nonlinear regression Full article

Journal Statistics and Probability Letters
ISSN: 0167-7152
Output data Year: 2017, Volume: 120, Pages: 87-94 Pages count : 8 DOI: 10.1016/j.spl.2016.09.022
Tags Asymptotic normality; Initial estimator; Nonlinear regression; One-step M-estimator; αn-consistency
Authors Linke Y.Y. 1,2 , Borisov I.S. 1,2
Affiliations
1 Sobolev Institute of Mathematics, Novosibirsk State University, Novosibirsk, 630090, Russian Federation
2 Novosibirsk State University

Abstract: We discuss an approach to construct explicitly calculable consistent estimators for parameters of some nonlinear regression models. The estimators of such a kind can be used as initial estimators in one-step estimation procedures for unknown parameters of these models. © 2016 Elsevier B.V.
Cite: Linke Y.Y. , Borisov I.S.
Constructing initial estimators in one-step estimation procedures of nonlinear regression
Statistics and Probability Letters. 2017. V.120. P.87-94. DOI: 10.1016/j.spl.2016.09.022 WOS Scopus OpenAlex
Identifiers:
Web of science: WOS:000388781800011
Scopus: 2-s2.0-84992522070
OpenAlex: W2528214842
Citing:
DB Citing
Scopus 17
OpenAlex 22
Web of science 12
Altmetrics: