Constructing initial estimators in one-step estimation procedures of nonlinear regression Full article
Journal |
Statistics and Probability Letters
ISSN: 0167-7152 |
||||
---|---|---|---|---|---|
Output data | Year: 2017, Volume: 120, Pages: 87-94 Pages count : 8 DOI: 10.1016/j.spl.2016.09.022 | ||||
Tags | Asymptotic normality; Initial estimator; Nonlinear regression; One-step M-estimator; αn-consistency | ||||
Authors |
|
||||
Affiliations |
|
Abstract:
We discuss an approach to construct explicitly calculable consistent estimators for parameters of some nonlinear regression models. The estimators of such a kind can be used as initial estimators in one-step estimation procedures for unknown parameters of these models. © 2016 Elsevier B.V.
Cite:
Linke Y.Y.
, Borisov I.S.
Constructing initial estimators in one-step estimation procedures of nonlinear regression
Statistics and Probability Letters. 2017. V.120. P.87-94. DOI: 10.1016/j.spl.2016.09.022 WOS Scopus OpenAlex
Constructing initial estimators in one-step estimation procedures of nonlinear regression
Statistics and Probability Letters. 2017. V.120. P.87-94. DOI: 10.1016/j.spl.2016.09.022 WOS Scopus OpenAlex
Identifiers:
Web of science: | WOS:000388781800011 |
Scopus: | 2-s2.0-84992522070 |
OpenAlex: | W2528214842 |