Sciact
  • EN
  • RU

QUASI–ELLIPTIC EQUATIONS WITH DEGENERATION Full article

Journal Математические заметки СВФУ (Mathematical Notes of NEFU)
ISSN: 2411-9326 , E-ISSN: 2587-876X
Output data Year: 2021, Volume: 28, Number: 4, Pages: 48-57 Pages count : 10 DOI: 10.25587/SVFU.2021.18.43.004
Tags Boundary value problem; Degeneration; Existence; Quasi-elliptic equations; Regular solution; Uniqueness
Authors Kozhanov A.I. 1,2 , Varlamova G.A. 3
Affiliations
1 Sobolev Institute of Mathematics, 4 Koptyug Avenue, Novosibirsk, 630090, Russian Federation
2 Academy of Science of the Republic of Sakha (Yakutia), 33 Lenin Avenue, Yakutsk, 677007, Russian Federation
3 Ammosov North-Eastern Federal University, Mirny Polytechnic Institute, 5/1 Tikhonov Street, Mirny, 678175, Russian Federation

Abstract: We study the solvability of boundary value problems for some classes of de-generate quasi-elliptic equations. The main feature of the problems under study is that, despite the degeneration, boundary conditions should still be imposed on the boundary manifolds. We prove the existence and uniqueness theorems for the regular solutions, those having all generalized Sobolev derivatives required in the equation in the inner subdomains. Moreover, we describe some possible enhancements and generalizations of the obtained results. © 2021 A. I. Kozhanov and G. A. Varlamova.
Cite: Kozhanov A.I. , Varlamova G.A.
QUASI–ELLIPTIC EQUATIONS WITH DEGENERATION
Математические заметки СВФУ (Mathematical Notes of NEFU). 2021. V.28. N4. P.48-57. DOI: 10.25587/SVFU.2021.18.43.004 Scopus OpenAlex
Identifiers:
Scopus: 2-s2.0-85126454220
OpenAlex: W4210699337
Citing: Пока нет цитирований
Altmetrics: