Sciact
  • EN
  • RU

On one test for the switching separability of graphs modulo q Full article

Journal Siberian Mathematical Journal
ISSN: 0037-4466 , E-ISSN: 1573-9260
Output data Year: 2016, Volume: 57, Number: 1, Pages: 7-17 Pages count : 11 DOI: 10.1134/s003744661601002x
Tags Seidel switching, separability, n-ary quasigroup
Authors Bespalov E.A. 1 , Krotov D.S. 1
Affiliations
1 Sobolev Institute of Mathematics, Novosibirsk, Russia

Abstract: We consider graphs whose edges are marked by numbers (weights) from 1 to q-1 (with zero corresponding to the absence of an edge). A graph is additive if its vertices can be marked so that, for every two nonadjacent vertices, the sum of the marks modulo q is zero, and for adjacent vertices, it equals the weight of the corresponding edge. A switching of a given graph is its sum modulo q with some additive graph on the same set of vertices. A graph on n vertices is switching separable if some of its switchings has no connected components of size greater than n-2. We consider the following separability test: If removing any vertex from G leads to a switching separable graph then G is switching separable. We prove this test for q odd and characterize the set of exclusions for q even. Connection is established between the switching separability of a graph and the reducibility of the n-ary quasigroup constructed from the graph.
Cite: Bespalov E.A. , Krotov D.S.
On one test for the switching separability of graphs modulo q
Siberian Mathematical Journal. 2016. V.57. N1. P.7-17. DOI: 10.1134/s003744661601002x WOS Scopus РИНЦ OpenAlex
Original: Беспалов Е.А. , Кротов Д.С.
Об одном признаке свитчинговой разделимости графов по модулю q
Сибирский математический журнал. 2016. Т.57. №1. С.10-24. DOI: 10.17377/smzh.2016.57.102 РИНЦ
Dates:
Submitted: Dec 2, 2014
Published online: Mar 29, 2016
Identifiers:
Web of science: WOS:000373234400002
Scopus: 2-s2.0-85008471286
Elibrary: 29472161
OpenAlex: W3100811678
Citing:
DB Citing
Scopus 1
Elibrary 1
Altmetrics: