Sciact
  • EN
  • RU

Brieskorn Manifolds, Generalized Sieradski Groups, and Coverings of Lens Spaces Научная публикация

Журнал Proceedings of the Steklov Institute of Mathematics
ISSN: 0081-5438 , E-ISSN: 1531-8605
Вых. Данные Год: 2019, Том: 304, Страницы: S175-S185 Страниц : DOI: 10.1134/S0081543819020196
Ключевые слова 3-manifold; branched covering; Brieskorn manifold; cyclically presented group; lens space; Sieradski group
Авторы Vesnin A.Y. 1,3 , Kozlovskaya T.A. 2
Организации
1 Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russian Federation
2 Magadan Institute of Economics, Magadan, 685000, Russian Federation
3 Novosibirsk State University, Novosibirsk, 630090, Russian Federation

Реферат: A Brieskorn manifold B(p, q, r) is the r-fold cyclic covering of the 3-sphere S3 branched over the torus knot T(p, q). Generalized Sieradski groups S(m, p, q) are groups with an m-cyclic presentation Gm(w), where the word w has a special form depending on p and q. In particular, S(m, 3, 2) = Gm(w) is the group with m generators x1,…, xm and m defining relations w(xi, xi+1, xi+2) = 1, where w(xi, xi+1, xi+2) = xi, xi+2, xi+1−1. Cyclic presentations of the groups S(2n, 3, 2) in the form Gn(w) were investigated by Howie and Williams, who showed that the n-cyclic presentations are geometric, i.e., correspond to spines of closed 3-manifolds. We establish a similar result for the groups S(2n, 5, 2). It is shown that in both cases the manifolds are n-fold branched cyclic coverings of lens spaces. To classify some of the constructed manifolds, we use Matveev’s computer program “Recognizer”. © 2019, Pleiades Publishing, Ltd.
Библиографическая ссылка: Vesnin A.Y. , Kozlovskaya T.A.
Brieskorn Manifolds, Generalized Sieradski Groups, and Coverings of Lens Spaces
Proceedings of the Steklov Institute of Mathematics. 2019. V.304. P.S175-S185. DOI: 10.1134/S0081543819020196 WOS Scopus OpenAlex
Идентификаторы БД:
Web of science: WOS:000470756500018
Scopus: 2-s2.0-85067065539
OpenAlex: W2754455881
Цитирование в БД:
БД Цитирований
Scopus 1
Web of science 1
Альметрики: