Sciact
  • EN
  • RU

Perturbations of superstable linear hyperbolic systems Научная публикация

Журнал Journal of Mathematical Analysis and Applications
ISSN: 0022-247X , E-ISSN: 1096-0813
Вых. Данные Год: 2018, Том: 460, Номер: 2, Страницы: 838-862 Страниц : 25 DOI: 10.1016/j.jmaa.2017.12.030
Ключевые слова Bounded perturbations; Evolution family; Exponential stability; First order hyperbolic systems; Smoothing boundary conditions; Superstability
Авторы Kmit I. 1,2 , Lyul`ko N.A. 3,4
Организации
1 Humboldt University of Berlin
2 Institute for Applied Problems of Mechanics and Mathematics, Ukrainian National Academy of Sciences, Ukraine
3 Sobolev Institute of Mathematics, Russian Academy of Sciences
4 Novosibirsk State University

Реферат: The paper deals with initial-boundary value problems for linear non-autonomous first order hyperbolic systems whose solutions stabilize to zero in a finite time. We prove that problems in this class remain exponentially stable in L2as well as in C1under small bounded perturbations. To show this for C1, we prove a general smoothing result implying that the solutions to the perturbed problems become eventually C1-smooth for any L2-initial data.
Библиографическая ссылка: Kmit I. , Lyul`ko N.A.
Perturbations of superstable linear hyperbolic systems
Journal of Mathematical Analysis and Applications. 2018. V.460. N2. P.838-862. DOI: 10.1016/j.jmaa.2017.12.030 WOS Scopus OpenAlex
Идентификаторы БД:
Web of science: WOS:000425705800021
Scopus: 2-s2.0-85038350285
OpenAlex: W2964209204
Цитирование в БД:
БД Цитирований
Scopus 10
OpenAlex 13
Web of science 6
Альметрики: