Perturbations of superstable linear hyperbolic systems Научная публикация
Журнал |
Journal of Mathematical Analysis and Applications
ISSN: 0022-247X , E-ISSN: 1096-0813 |
||||||||
---|---|---|---|---|---|---|---|---|---|
Вых. Данные | Год: 2018, Том: 460, Номер: 2, Страницы: 838-862 Страниц : 25 DOI: 10.1016/j.jmaa.2017.12.030 | ||||||||
Ключевые слова | Bounded perturbations; Evolution family; Exponential stability; First order hyperbolic systems; Smoothing boundary conditions; Superstability | ||||||||
Авторы |
|
||||||||
Организации |
|
Реферат:
The paper deals with initial-boundary value problems for linear non-autonomous first order hyperbolic systems whose solutions stabilize to zero in a finite time. We prove that problems in this class remain exponentially stable in L2as well as in C1under small bounded perturbations. To show this for C1, we prove a general smoothing result implying that the solutions to the perturbed problems become eventually C1-smooth for any L2-initial data.
Библиографическая ссылка:
Kmit I.
, Lyul`ko N.A.
Perturbations of superstable linear hyperbolic systems
Journal of Mathematical Analysis and Applications. 2018. V.460. N2. P.838-862. DOI: 10.1016/j.jmaa.2017.12.030 WOS Scopus OpenAlex
Perturbations of superstable linear hyperbolic systems
Journal of Mathematical Analysis and Applications. 2018. V.460. N2. P.838-862. DOI: 10.1016/j.jmaa.2017.12.030 WOS Scopus OpenAlex
Идентификаторы БД:
Web of science: | WOS:000425705800021 |
Scopus: | 2-s2.0-85038350285 |
OpenAlex: | W2964209204 |