Sciact
  • EN
  • RU

Deviations of Fejer Sums and Rates of Convergence in the von Neumann Ergodic Theorem Full article

Journal Doklady Mathematics
ISSN: 1064-5624 , E-ISSN: 1531-8362
Output data Year: 2018, Volume: 97, Number: 3, Pages: 211-214 Pages count : 4 DOI: 10.1134/S1064562418030031
Authors Kachurovskii A.G. 1 , Knizhov K.I. 2
Affiliations
1 Sobolev Institute of Mathematics, Siberian Branch, Russian Academy of Sciences, Novosibirsk, 630090, Russian Federation
2 Novosibirsk State University, Novosibirsk, 630090, Russian Federation

Abstract: It turns out that the deviations of the Fejer sums for continuous 2π-periodic functions and the rates of convergence in the von Neumann ergodic theorem can both be calculated using, in fact, the same formulas (by integrating the Fejer kernels). As a result, for many dynamical systems popular in applications, the rates of convergence in the von Neumann ergodic theorem can be estimated with a sharp leading coefficient of the asymptotic by applying S.N. Bernstein’s more than hundred-year old results in harmonic analysis. © 2018, Pleiades Publishing, Ltd.
Cite: Kachurovskii A.G. , Knizhov K.I.
Deviations of Fejer Sums and Rates of Convergence in the von Neumann Ergodic Theorem
Doklady Mathematics. 2018. V.97. N3. P.211-214. DOI: 10.1134/S1064562418030031 WOS Scopus РИНЦ OpenAlex
Original: Качуровский A.Г. , Книжов К.И.
Уклонения сумм Фейера и скорости сходимости в эргодической теореме фон Неймана
Доклады академии наук. 2018. Т.480. №1. С.21-24. DOI: 10.7868/s0869565218130042 РИНЦ MathNet OpenAlex
Identifiers:
Web of science: WOS:000438890200004
Scopus: 2-s2.0-85050139539
Elibrary: 35747107
OpenAlex: W2884743484
Citing:
DB Citing
Scopus 3
Web of science 3
Elibrary 3
OpenAlex 4
Altmetrics: