Deviations of Fejer Sums and Rates of Convergence in the von Neumann Ergodic Theorem Full article
Journal |
Doklady Mathematics
ISSN: 1064-5624 , E-ISSN: 1531-8362 |
||||
---|---|---|---|---|---|
Output data | Year: 2018, Volume: 97, Number: 3, Pages: 211-214 Pages count : 4 DOI: 10.1134/S1064562418030031 | ||||
Authors |
|
||||
Affiliations |
|
Abstract:
It turns out that the deviations of the Fejer sums for continuous 2π-periodic functions and the rates of convergence in the von Neumann ergodic theorem can both be calculated using, in fact, the same formulas (by integrating the Fejer kernels). As a result, for many dynamical systems popular in applications, the rates of convergence in the von Neumann ergodic theorem can be estimated with a sharp leading coefficient of the asymptotic by applying S.N. Bernstein’s more than hundred-year old results in harmonic analysis. © 2018, Pleiades Publishing, Ltd.
Cite:
Kachurovskii A.G.
, Knizhov K.I.
Deviations of Fejer Sums and Rates of Convergence in the von Neumann Ergodic Theorem
Doklady Mathematics. 2018. V.97. N3. P.211-214. DOI: 10.1134/S1064562418030031 WOS Scopus РИНЦ OpenAlex
Deviations of Fejer Sums and Rates of Convergence in the von Neumann Ergodic Theorem
Doklady Mathematics. 2018. V.97. N3. P.211-214. DOI: 10.1134/S1064562418030031 WOS Scopus РИНЦ OpenAlex
Original:
Качуровский A.Г.
, Книжов К.И.
Уклонения сумм Фейера и скорости сходимости в эргодической теореме фон Неймана
Доклады академии наук. 2018. Т.480. №1. С.21-24. DOI: 10.7868/s0869565218130042 РИНЦ MathNet OpenAlex
Уклонения сумм Фейера и скорости сходимости в эргодической теореме фон Неймана
Доклады академии наук. 2018. Т.480. №1. С.21-24. DOI: 10.7868/s0869565218130042 РИНЦ MathNet OpenAlex
Identifiers:
Web of science: | WOS:000438890200004 |
Scopus: | 2-s2.0-85050139539 |
Elibrary: | 35747107 |
OpenAlex: | W2884743484 |