Sciact
  • EN
  • RU

Integro-Local Limit Theorems for Compound Renewal Processes under Cramér’S Condition. I Full article

Journal Siberian Mathematical Journal
ISSN: 0037-4466 , E-ISSN: 1573-9260
Output data Year: 2018, Volume: 59, Number: 3, Pages: 383-402 Pages count : 20 DOI: 10.1134/S0037446618030023
Tags compound renewal process; Cramér’s condition; deviation function; integro-local theorem; large deviations; renewal measure; second deviation function
Authors Borovkov A.A. 1 , Mogulskii A.A. 1
Affiliations
1 Sobolev Institute of Mathematics, Novosibirsk, Russian Federation

Abstract: We obtain integro-local limit theorems in the phase space for compound renewal processes under Cramér’s moment condition. These theorems apply in a domain analogous to Cramér’s zone of deviations for random walks. It includes the zone of normal and moderately large deviations. Under the same conditions we establish some integro-local theorems for finite-dimensional distributions of compound renewal processes. © 2018, Pleiades Publishing, Ltd.
Cite: Borovkov A.A. , Mogulskii A.A.
Integro-Local Limit Theorems for Compound Renewal Processes under Cramér’S Condition. I
Siberian Mathematical Journal. 2018. V.59. N3. P.383-402. DOI: 10.1134/S0037446618030023 WOS Scopus OpenAlex
Original: Боровков А.А. , Могульский А.А.
Интегро-локальные предельные теоремы для обобщенных процессов восстановления при выполнении условия Крамера. I
Сибирский математический журнал. 2018. Т.59. №3. С.491–513. DOI: 10.17377/smzh.2018.59.302 РИНЦ
Identifiers:
Web of science: WOS:000436590800002
Scopus: 2-s2.0-85049341902
OpenAlex: W4252827228
Citing:
DB Citing
Scopus 21
OpenAlex 15
Web of science 20
Altmetrics: