Интегро-локальные предельные теоремы для обобщенных процессов восстановления при выполнении условия Крамера. I Full article
Journal |
Сибирский математический журнал
ISSN: 0037-4474 |
||
---|---|---|---|
Output data | Year: 2018, Volume: 59, Number: 3, Pages: 491–513 Pages count : DOI: 10.17377/smzh.2018.59.302 | ||
Tags | обобщенный процесс восстановления, большие уклонения, интегро-локальные теоремы, мера восстановления, условие Крамера, функция уклонений, вторая функция уклонений | ||
Authors |
|
||
Affiliations |
|
Abstract:
Получены интегро-локальные предельные теоремы в фазовом пространстве для обобщенных процессов восстановления при выполнении моментного условия Крамера. Теоремы действуют в области, являющейся аналогом крамеровской зоны уклонений для случайных блужданий. Эта область включает в себя зоны нормальных и умеренно-больших уклонений. При тех же условиях установлены интегро-локальные теоремы для конечномерных распределений обобщенных процессов восстановления.
Cite:
Боровков А.А.
, Могульский А.А.
Интегро-локальные предельные теоремы для обобщенных процессов восстановления при выполнении условия Крамера. I
Сибирский математический журнал. 2018. Т.59. №3. С.491–513. DOI: 10.17377/smzh.2018.59.302 РИНЦ
Интегро-локальные предельные теоремы для обобщенных процессов восстановления при выполнении условия Крамера. I
Сибирский математический журнал. 2018. Т.59. №3. С.491–513. DOI: 10.17377/smzh.2018.59.302 РИНЦ
Translated:
Borovkov A.A.
, Mogulskii A.A.
Integro-Local Limit Theorems for Compound Renewal Processes under Cramér’S Condition. I
Siberian Mathematical Journal. 2018. V.59. N3. P.383-402. DOI: 10.1134/S0037446618030023 WOS Scopus OpenAlex
Integro-Local Limit Theorems for Compound Renewal Processes under Cramér’S Condition. I
Siberian Mathematical Journal. 2018. V.59. N3. P.383-402. DOI: 10.1134/S0037446618030023 WOS Scopus OpenAlex
Dates:
Submitted: | Dec 12, 2017 |
Identifiers:
Elibrary: | 41240550 |
Citing:
DB | Citing |
---|---|
Elibrary | 14 |