Sciact
  • EN
  • RU

VOLUMES OF TWO-BRIDGE CONE MANIFOLDS IN SPACES OF CONSTANT CURVATURE Научная публикация

Журнал Transformation Groups
ISSN: 1083-4362 , E-ISSN: 1531-586X
Вых. Данные Год: 2021, Том: 26, Номер: 2, Страницы: 601-629 Страниц : 29 DOI: 10.1007/s00031-020-09632-x
Авторы Mednykh A.D. 1,2
Организации
1 Sobolev Institute of Mathematics, pr. Koptuga, 4, Novosibirsk, 630090, Russian Federation
2 Novosibirsk State University, Pirogova st., 2, Novosibirsk, 630090, Russian Federation

Реферат: We investigate the existence of hyperbolic, spherical or Euclidean structure on cone-manifolds whose underlying space is the three-dimensional sphere and singular set is a given two-bridge knot. For two-bridge knots with not more than 7 crossings we present trigonometrical identities involving the lengths of singular geodesics and cone angles of such cone-manifolds. Then these identities are used to produce exact integral formulae for the volume of the corresponding cone-manifold modeled in the hyperbolic, spherical and Euclidean geometries. © 2020, Springer Science+Business Media, LLC, part of Springer Nature.
Библиографическая ссылка: Mednykh A.D.
VOLUMES OF TWO-BRIDGE CONE MANIFOLDS IN SPACES OF CONSTANT CURVATURE
Transformation Groups. 2021. V.26. N2. P.601-629. DOI: 10.1007/s00031-020-09632-x WOS Scopus OpenAlex
Идентификаторы БД:
Web of science: WOS:000592131400001
Scopus: 2-s2.0-85096541189
OpenAlex: W3108919698
Цитирование в БД:
БД Цитирований
Scopus 4
OpenAlex 9
Web of science 4
Альметрики: