Sciact
  • EN
  • RU

Extension of the Invariance Principle for Compound Renewal Processes to the Zones of Moderately Large and Small Deviations Full article

Journal Theory of Probability and its Applications
ISSN: 0040-585X , E-ISSN: 1095-7219
Output data Year: 2021, Volume: 65, Number: 4, Pages: 511-526 Pages count : 16 DOI: 10.1137/S0040585X97T990095
Tags compound renewal processinvariance principlelarge deviationssmall deviationsrandom walk
Authors Borovkov Aleksandr Alekseevich 1
Affiliations
1 Sobolev Institute of Mathematics

Abstract: The invariance principle for compound renewal processes is extended (in the sense of asymptotic equivalence) to the zone of moderately large and small deviations. It is assumed that the vector (τ,ζ), which “governs” the process, satisfies certain moment conditions (for example, the Cramér condition), and its components τ and ζ are either independent or linearly dependent. This extension holds, in particular, for random walks.
Cite: Borovkov A.A.
Extension of the Invariance Principle for Compound Renewal Processes to the Zones of Moderately Large and Small Deviations
Theory of Probability and its Applications. 2021. V.65. N4. P.511-526. DOI: 10.1137/S0040585X97T990095 WOS Scopus OpenAlex
Original: Боровков А.А.
Распространение принципа инвариантности для обобщенных процессов восстановления на области умеренно больших и малых уклонений
Теория вероятностей и ее применения. 2020. Т.65. №4. С.651–670. DOI: 10.4213/tvp5362 РИНЦ OpenAlex
Identifiers:
Web of science: WOS:000616235300001
Scopus: 2-s2.0-85104404147
OpenAlex: W3129127966
Citing:
DB Citing
OpenAlex 2
Scopus 2
Web of science 2
Altmetrics: