Definable sets in generic structures and their cardinalities Full article
Journal |
Siberian Advances in Mathematics
ISSN: 1055-1344 , E-ISSN: 1934-8126 |
||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Output data | Year: 2018, Volume: 28, Number: 1, Pages: 39-52 Pages count : 18 DOI: 10.3103/S1055134418010030 | ||||||||||
Tags | calculus for definable sets; cardinality of set; definable set; generative class; generic structure | ||||||||||
Authors |
|
||||||||||
Affiliations |
|
Abstract:
Analyzing diagrams forming generative classes, we describe definable sets and their links in generic structures as well as cardinality bounds for these definable sets, finite or infinite. Introducing basic characteristics for definable sets in generic structures, we compare them each others and with cardinalities of these sets.We introduce calculi for (type-)definable sets allowing to compare their cardinalities. In terms of these calculi, Trichotomy Theorem for possibilities comparing cardinalities of definable sets is proved. Using these calculi, we characterize the possibility to
construct a generic structure of a given generative class.
Cite:
Kiouvrekis Y.
, Stefaneas P.
, Sudoplatov S.V.
Definable sets in generic structures and their cardinalities
Siberian Advances in Mathematics. 2018. V.28. N1. P.39-52. DOI: 10.3103/S1055134418010030 Scopus РИНЦ OpenAlex
Definable sets in generic structures and their cardinalities
Siberian Advances in Mathematics. 2018. V.28. N1. P.39-52. DOI: 10.3103/S1055134418010030 Scopus РИНЦ OpenAlex
Original:
Киуврекис Я.С.
, Стефанеас П.
, Судоплатов С.В.
Определимые множества в генерических структурах и их мощности
Математические труды. 2017. Т.20. №2. С.52-79. DOI: 10.17377/mattrudy.2017.20.203 РИНЦ
Определимые множества в генерических структурах и их мощности
Математические труды. 2017. Т.20. №2. С.52-79. DOI: 10.17377/mattrudy.2017.20.203 РИНЦ
Dates:
Submitted: | Feb 1, 2017 |
Published print: | Mar 8, 2018 |
Published online: | Mar 8, 2018 |
Identifiers:
Scopus: | 2-s2.0-85043504428 |
Elibrary: | 35491793 |
OpenAlex: | W2791726316 |