Sciact
  • EN
  • RU

New aspects of complexity theory for 3-manifolds Научная публикация

Журнал Russian Mathematical Surveys
ISSN: 0036-0279 , E-ISSN: 1468-4829
Вых. Данные Год: 2018, Том: 73, Номер: 4, Страницы: 615-660 Страниц : 46 DOI: 10.1070/RM9829
Ключевые слова 3-manifolds; Matveev complexity; spines; tetrahedral complexity; triangulations
Авторы Vesnin A.Y. 1,2 , Matveev S.V. 3,4 , Fominykh E.A. 3,4
Организации
1 Tomsk State University
2 Sobolev Institute of Mathematics
3 Chelyabinsk State University
4 Krasovsky Institute of Mathematics and Mechanics

Реферат: Recent developments in the theory of complexity for three- dimensional manifolds are reviewed, including results and methods that emerged over the last decade. Infinite families of closed orientable manifolds and hyperbolic manifolds with totally geodesic boundary are presented, and the exact values of the Matveev complexity are given for them. New methods for computing complexity are described, based on calculation of the Turaev-Viro invariants and hyperbolic volumes of 3-manifolds. Bibliography: 89 titles. © 2018 RAS(DoM) and LMS.
Библиографическая ссылка: Vesnin A.Y. , Matveev S.V. , Fominykh E.A.
New aspects of complexity theory for 3-manifolds
Russian Mathematical Surveys. 2018. V.73. N4. P.615-660. DOI: 10.1070/RM9829 WOS Scopus OpenAlex
Идентификаторы БД:
Web of science: WOS:000448388200002
Scopus: 2-s2.0-85055805397
OpenAlex: W2890124241
Цитирование в БД:
БД Цитирований
Scopus 1
OpenAlex 1
Альметрики: