New aspects of complexity theory for 3-manifolds Научная публикация
Журнал |
Russian Mathematical Surveys
ISSN: 0036-0279 , E-ISSN: 1468-4829 |
||||||||
---|---|---|---|---|---|---|---|---|---|
Вых. Данные | Год: 2018, Том: 73, Номер: 4, Страницы: 615-660 Страниц : 46 DOI: 10.1070/RM9829 | ||||||||
Ключевые слова | 3-manifolds; Matveev complexity; spines; tetrahedral complexity; triangulations | ||||||||
Авторы |
|
||||||||
Организации |
|
Реферат:
Recent developments in the theory of complexity for three- dimensional manifolds are reviewed, including results and methods that emerged over the last decade. Infinite families of closed orientable manifolds and hyperbolic manifolds with totally geodesic boundary are presented, and the exact values of the Matveev complexity are given for them. New methods for computing complexity are described, based on calculation of the Turaev-Viro invariants and hyperbolic volumes of 3-manifolds. Bibliography: 89 titles. © 2018 RAS(DoM) and LMS.
Библиографическая ссылка:
Vesnin A.Y.
, Matveev S.V.
, Fominykh E.A.
New aspects of complexity theory for 3-manifolds
Russian Mathematical Surveys. 2018. V.73. N4. P.615-660. DOI: 10.1070/RM9829 WOS Scopus OpenAlex
New aspects of complexity theory for 3-manifolds
Russian Mathematical Surveys. 2018. V.73. N4. P.615-660. DOI: 10.1070/RM9829 WOS Scopus OpenAlex
Идентификаторы БД:
Web of science: | WOS:000448388200002 |
Scopus: | 2-s2.0-85055805397 |
OpenAlex: | W2890124241 |