Sciact
  • EN
  • RU

The Discrete Wiener-Hopf Equation Whose Kernel is a Probability Distribution with Positive Drift Научная публикация

Журнал Siberian Mathematical Journal
ISSN: 0037-4466 , E-ISSN: 1573-9260
Вых. Данные Год: 2020, Том: 61, Номер: 2, Страницы: 322-329 Страниц : 8 DOI: 10.1134/S0037446620020147
Ключевые слова arithmetic distribution; asymptotic behavior; discrete Wiener-Hopf equation; inhomogeneous equation; positive drift
Авторы Sgibnev M.S. 1
Организации
1 Sobolev Institute of Mathematics, Novosibirsk, Russian Federation

Реферат: We consider the discrete Wiener-Hopf equation with inhomogeneous term g={gj}j=0∞∈l∞; the kernel of the equation is an arithmetic probability distribution generating a random walk drifting to +∞. We prove that the previously obtained formula for the Wiener-Hopf equation with general arithmetic kernel for g ∈ l1 is a solution to the equation for g ∈ l∞ and that successive approximations converge to the solution. The asymptotics of the solution is established in the following cases with account taken of their peculiarities: (1) g ∈ l1; (2) g ∈ l∞; (3) gj → const as j → ∞; (4) g ∉ l1 and gj ↓ 0 as j → ∞. © 2020, Pleiades Publishing, Ltd.
Библиографическая ссылка: Sgibnev M.S.
The Discrete Wiener-Hopf Equation Whose Kernel is a Probability Distribution with Positive Drift
Siberian Mathematical Journal. 2020. V.61. N2. P.322-329. DOI: 10.1134/S0037446620020147 WOS Scopus OpenAlex
Идентификаторы БД:
Web of science: WOS:000540148100014
Scopus: 2-s2.0-85086338257
OpenAlex: W3035135812
Цитирование в БД: Пока нет цитирований
Альметрики: