Sciact
  • EN
  • RU

Turing Degrees and Automorphism Groups of Substructure Lattices Научная публикация

Журнал Algebra and Logic
ISSN: 0002-5232 , E-ISSN: 1573-8302
Вых. Данные Год: 2020, Том: 59, Номер: 1, Страницы: 18-32 Страниц : 15 DOI: 10.1007/s10469-020-09576-x
Ключевые слова automorphism; groups of d-computable automorphisms; interval Boolean algebra of ordered set of rationals; lattice of d-enumerable vector subspaces; Turing degree; Turing jump; Turing reducibility
Авторы Dimitrov R.D. 1,4 , Harizanov V. 2,4 , Morozov A.S. 3,4
Организации
1 Department of Mathematics, Western Illinois University, Macomb, IL 61455, United States
2 Department of Mathematics, George Washington University, Washington, DC 20052, United States
3 Sobolev Institute of Mathematics, pr. Akad. Koptyuga 4, Novosibirsk, 630090, Russian Federation
4 Novosibirsk State University, ul. Pirogova 1, Novosibirsk, 630090, Russian Federation

Реферат: The study of automorphisms of computable and other structures connects computability theory with classical group theory. Among the noncomputable countable structures, computably enumerable structures are one of the most important objects of investigation in computable model theory. Here we focus on the lattice structure of computably enumerable substructures of a given canonical computable structure. In particular, for a Turing degree d, we investigate the groups of d-computable automorphisms of the lattice of d-computably enumerable vector spaces, of the interval Boolean algebra Bη of the ordered set of rationals, and of the lattice of d-computably enumerable subalgebras of Bη. For these groups, we show that Turing reducibility can be used to substitute the group-theoretic embedding. We also prove that the Turing degree of the isomorphism types for these groups is the second Turing jump d′′ of d. © 2020, Springer Science+Business Media, LLC, part of Springer Nature.
Библиографическая ссылка: Dimitrov R.D. , Harizanov V. , Morozov A.S.
Turing Degrees and Automorphism Groups of Substructure Lattices
Algebra and Logic. 2020. V.59. N1. P.18-32. DOI: 10.1007/s10469-020-09576-x WOS Scopus OpenAlex
Оригинальная: Димитров Р. , Харизанова В. , Морозов А.С.
Тьюринговы степени и группы автоморфизмов решёток подструктур
Алгебра и логика. 2020. Т.59. №1. С.27-47. DOI: 10.33048/alglog.2020.59.102 РИНЦ MathNet OpenAlex
Идентификаторы БД:
Web of science: WOS:000534700100002
Scopus: 2-s2.0-85085048490
OpenAlex: W3027676332
Цитирование в БД:
БД Цитирований
Scopus 1
OpenAlex 2
Web of science 1
Альметрики: