Sciact
  • EN
  • RU

On Error Estimates of Local Approximation by Splines Full article

Journal Siberian Mathematical Journal
ISSN: 0037-4466 , E-ISSN: 1573-9260
Output data Year: 2020, Volume: 61, Number: 5, Pages: 795-802 Pages count : 8 DOI: 10.1134/S0037446620050031
Tags asymptotic expansion; error estimation; local splines; Schoenberg approximation
Authors Volkov Yu.S. 1 , Bogdanov V.V. 1
Affiliations
1 Sobolev Institute of Mathematics, Novosibirsk, Russian Federation

Abstract: We consider the so-called simplest formula for local approximation by polynomial splines of order n (Schoenberg splines). The spline itself and all derivatives except that of the highest order, approximate a given function and its corresponding derivatives with the second order. We show that the jump of the highest derivative of order n-1; i.e., the value of discontinuity, divided by the meshsize, approximates the n-th derivative of the original function. We found an asymptotic expansion of the jump. © 2020, Pleiades Publishing, Ltd.
Cite: Volkov Y.S. , Bogdanov V.V.
On Error Estimates of Local Approximation by Splines
Siberian Mathematical Journal. 2020. V.61. N5. P.795-802. DOI: 10.1134/S0037446620050031 WOS Scopus РИНЦ OpenAlex
Original: Волков Ю.С. , Богданов В.В.
О погрешности приближения простейшей локальной аппроксимацией сплайнами
Сибирский математический журнал. 2020. Т.61. №5. С.1000-1008. DOI: 10.33048/smzh.2020.61.503 РИНЦ MathNet OpenAlex
Identifiers:
Web of science: WOS:000573304200003
Scopus: 2-s2.0-85092101629
Elibrary: 45246041
OpenAlex: W3090634687
Citing:
DB Citing
Scopus 1
Web of science 1
Elibrary 3
OpenAlex 2
Altmetrics: