On Error Estimates of Local Approximation by Splines Full article
Journal |
Siberian Mathematical Journal
ISSN: 0037-4466 , E-ISSN: 1573-9260 |
||
---|---|---|---|
Output data | Year: 2020, Volume: 61, Number: 5, Pages: 795-802 Pages count : 8 DOI: 10.1134/S0037446620050031 | ||
Tags | asymptotic expansion; error estimation; local splines; Schoenberg approximation | ||
Authors |
|
||
Affiliations |
|
Abstract:
We consider the so-called simplest formula for local approximation by polynomial splines of order n (Schoenberg splines). The spline itself and all derivatives except that of the highest order, approximate a given function and its corresponding derivatives with the second order. We show that the jump of the highest derivative of order n-1; i.e., the value of discontinuity, divided by the meshsize, approximates the n-th derivative of the original function. We found an asymptotic expansion of the jump. © 2020, Pleiades Publishing, Ltd.
Cite:
Volkov Y.S.
, Bogdanov V.V.
On Error Estimates of Local Approximation by Splines
Siberian Mathematical Journal. 2020. V.61. N5. P.795-802. DOI: 10.1134/S0037446620050031 WOS Scopus РИНЦ OpenAlex
On Error Estimates of Local Approximation by Splines
Siberian Mathematical Journal. 2020. V.61. N5. P.795-802. DOI: 10.1134/S0037446620050031 WOS Scopus РИНЦ OpenAlex
Original:
Волков Ю.С.
, Богданов В.В.
О погрешности приближения простейшей локальной аппроксимацией сплайнами
Сибирский математический журнал. 2020. Т.61. №5. С.1000-1008. DOI: 10.33048/smzh.2020.61.503 РИНЦ MathNet OpenAlex
О погрешности приближения простейшей локальной аппроксимацией сплайнами
Сибирский математический журнал. 2020. Т.61. №5. С.1000-1008. DOI: 10.33048/smzh.2020.61.503 РИНЦ MathNet OpenAlex
Identifiers:
Web of science: | WOS:000573304200003 |
Scopus: | 2-s2.0-85092101629 |
Elibrary: | 45246041 |
OpenAlex: | W3090634687 |