An unknotting index for virtual links Full article
Journal |
Topology and its Applications
ISSN: 0166-8641 |
||||||
---|---|---|---|---|---|---|---|
Output data | Year: 2019, Volume: 264, Pages: 352-368 Pages count : 17 DOI: 10.1016/j.topol.2019.06.030 | ||||||
Tags | Pretzel link; Span value; Unknotting index; Virtual link | ||||||
Authors |
|
||||||
Affiliations |
|
Abstract:
Given a virtual link diagram D, we define its unknotting index U(D) to be minimum among (m,n) tuples, where m stands for the number of crossings virtualized and n stands for the number of classical crossing changes, to obtain a trivial link diagram. By using span of a diagram and linking number of a diagram we provide a lower bound for unknotting index of a virtual link. Then using warping degree of a diagram, we obtain an upper bound. Both these bounds are applied to find unknotting index for virtual links obtained from pretzel links by virtualizing some crossings. © 2019 Elsevier B.V.
Cite:
Kaur K.
, Prabhakar M.
, Vesnin A.
An unknotting index for virtual links
Topology and its Applications. 2019. V.264. P.352-368. DOI: 10.1016/j.topol.2019.06.030 WOS Scopus OpenAlex
An unknotting index for virtual links
Topology and its Applications. 2019. V.264. P.352-368. DOI: 10.1016/j.topol.2019.06.030 WOS Scopus OpenAlex
Identifiers:
Web of science: | WOS:000482251200028 |
Scopus: | 2-s2.0-85067873020 |
OpenAlex: | W2806831671 |