Sciact
  • EN
  • RU

An unknotting index for virtual links Научная публикация

Журнал Topology and its Applications
ISSN: 0166-8641
Вых. Данные Год: 2019, Том: 264, Страницы: 352-368 Страниц : 17 DOI: 10.1016/j.topol.2019.06.030
Ключевые слова Pretzel link; Span value; Unknotting index; Virtual link
Авторы Kaur K. 1 , Prabhakar M. 1 , Vesnin A. 2,3
Организации
1 Department of Mathematics, Indian Institute of Technology Ropar, India
2 Tomsk State University, Lenin ave. 36, Tomsk, 634050, Russian Federation
3 Sobolev Institute of Mathematics, pr. ak. Koptyuga, 4, Novosibirsk, 630090, Russian Federation

Реферат: Given a virtual link diagram D, we define its unknotting index U(D) to be minimum among (m,n) tuples, where m stands for the number of crossings virtualized and n stands for the number of classical crossing changes, to obtain a trivial link diagram. By using span of a diagram and linking number of a diagram we provide a lower bound for unknotting index of a virtual link. Then using warping degree of a diagram, we obtain an upper bound. Both these bounds are applied to find unknotting index for virtual links obtained from pretzel links by virtualizing some crossings. © 2019 Elsevier B.V.
Библиографическая ссылка: Kaur K. , Prabhakar M. , Vesnin A.
An unknotting index for virtual links
Topology and its Applications. 2019. V.264. P.352-368. DOI: 10.1016/j.topol.2019.06.030 WOS Scopus OpenAlex
Идентификаторы БД:
Web of science: WOS:000482251200028
Scopus: 2-s2.0-85067873020
OpenAlex: W2806831671
Цитирование в БД:
БД Цитирований
Scopus 2
OpenAlex 3
Web of science 2
Альметрики: