Sciact
  • EN
  • RU

Splitting a planar graph of girth 5 into two forests with trees of small diameter Научная публикация

Журнал Discrete Mathematics
ISSN: 0012-365X , E-ISSN: 1872-681X
Вых. Данные Год: 2018, Том: 341, Номер: 7, Страницы: 2058-2067 Страниц : 10 DOI: 10.1016/j.disc.2018.04.007
Ключевые слова Forest; List colouring; Pk-free colouring; Path partition; Planar graph
Авторы Glebov Aleksey N. 1
Организации
1 Sobolev Institute of Mathematics SB RAS, Prospekt Ak. Koptyuga, 4, Novosibirsk, 630090, Russian Federation

Реферат: In 1985, Mihok and recently Axenovich, Ueckerdt, and Weiner asked about the minimum integer g∗>3 such that every planar graph with girth at least g∗ admits a 2-colouring of its vertices where the length of every monochromatic path is bounded from above by a constant. By results of Glebov and Zambalaeva and of Axenovich et al., it follows that 5≤g∗≤6. In this paper we establish that g∗=5. Moreover, we prove that every planar graph of girth at least 5 admits a 2-colouring of its vertices such that every monochromatic component is a tree of diameter at most 6. We also present the list version of our result. © 2018 Elsevier B.V.
Библиографическая ссылка: Glebov A.N.
Splitting a planar graph of girth 5 into two forests with trees of small diameter
Discrete Mathematics. 2018. V.341. N7. P.2058-2067. DOI: 10.1016/j.disc.2018.04.007 WOS Scopus OpenAlex
Даты:
Поступила в редакцию: 22 нояб. 2016 г.
Принята к публикации: 10 апр. 2018 г.
Идентификаторы БД:
Web of science: WOS:000434743300022
Scopus: 2-s2.0-85046342684
OpenAlex: W2800944282
Цитирование в БД:
БД Цитирований
Scopus 3
OpenAlex 1
Web of science 3
Альметрики: