Sciact
  • EN
  • RU

Two-Step Estimation in a Heteroscedastic Linear Regression Model Full article

Journal Journal of Mathematical Sciences (United States)
ISSN: 1072-3374 , E-ISSN: 1573-8795
Output data Year: 2018, Volume: 231, Number: 2, Pages: 206-217 Pages count : 12 DOI: 10.1007/s10958-018-3816-y
Authors Linke Y.Y. 1,2
Affiliations
1 Sobolev Institute of Mathematics SB RAS, 4, Akad. Koptyuga pr., Novosibirsk, 630090, Russian Federation
2 Novosibirsk State University, 1, Pirogova St., Novosibirsk, 630090, Russian Federation

Abstract: We study the problem of estimating a parameter in some heteroscedastic linear regression model in the case where the regressors consist of all order statistics based on the sample of identically distributed not necessarily independent observations with finite second moment. It is assumed that the random errors depend on the parameter and distributions of the corresponding regressors. We propose a two-step procedure for finding explicit asymptotically normal estimators. © 2018, Springer Science+Business Media, LLC, part of Springer Nature.
Cite: Linke Y.Y.
Two-Step Estimation in a Heteroscedastic Linear Regression Model
Journal of Mathematical Sciences (United States). 2018. V.231. N2. P.206-217. DOI: 10.1007/s10958-018-3816-y Scopus OpenAlex
Identifiers:
Scopus: 2-s2.0-85045947229
OpenAlex: W2799323789
Citing: Пока нет цитирований
Altmetrics: