Sciact
  • EN
  • RU

Two-Step Estimation in a Heteroscedastic Linear Regression Model Научная публикация

Журнал Journal of Mathematical Sciences (United States)
ISSN: 1072-3374 , E-ISSN: 1573-8795
Вых. Данные Год: 2018, Том: 231, Номер: 2, Страницы: 206-217 Страниц : 12 DOI: 10.1007/s10958-018-3816-y
Авторы Linke Y.Y. 1,2
Организации
1 Sobolev Institute of Mathematics SB RAS, 4, Akad. Koptyuga pr., Novosibirsk, 630090, Russian Federation
2 Novosibirsk State University, 1, Pirogova St., Novosibirsk, 630090, Russian Federation

Реферат: We study the problem of estimating a parameter in some heteroscedastic linear regression model in the case where the regressors consist of all order statistics based on the sample of identically distributed not necessarily independent observations with finite second moment. It is assumed that the random errors depend on the parameter and distributions of the corresponding regressors. We propose a two-step procedure for finding explicit asymptotically normal estimators. © 2018, Springer Science+Business Media, LLC, part of Springer Nature.
Библиографическая ссылка: Linke Y.Y.
Two-Step Estimation in a Heteroscedastic Linear Regression Model
Journal of Mathematical Sciences (United States). 2018. V.231. N2. P.206-217. DOI: 10.1007/s10958-018-3816-y Scopus OpenAlex
Идентификаторы БД:
Scopus: 2-s2.0-85045947229
OpenAlex: W2799323789
Цитирование в БД: Пока нет цитирований
Альметрики: