Sciact
  • EN
  • RU

Asymptotics and Arithmetical Properties of Complexity for Circulant Graphs Full article

Journal Doklady Mathematics
ISSN: 1064-5624 , E-ISSN: 1531-8362
Output data Year: 2018, Volume: 97, Number: 2, Pages: 147-151 Pages count : 5 DOI: 10.1134/S1064562418020138
Authors Mednykh A.D. 1,2 , Mednykh I.A. 1,2
Affiliations
1 Sobolev Institute of Mathematics, Siberian Branch, Russian Academy of Sciences, Novosibirsk, 630090, Russian Federation
2 Novosibirsk State University, Novosibirsk, 630090, Russian Federation

Abstract: Abstract—We study analytical and arithmetical properties of the complexity function for infinite families of circulant Cn(s1, s2,…, sk) C2n(s1, s2,…, sk, n). Exact analytical formulas for the complexity functions of these families are derived, and their asymptotics are found. As a consequence, we show that the thermodynamic limit of these families of graphs coincides with the small Mahler measure of the accompanying Laurent polynomials. © 2018, Pleiades Publishing, Ltd.
Cite: Mednykh A.D. , Mednykh I.A.
Asymptotics and Arithmetical Properties of Complexity for Circulant Graphs
Doklady Mathematics. 2018. V.97. N2. P.147-151. DOI: 10.1134/S1064562418020138 WOS Scopus OpenAlex
Identifiers:
Web of science: WOS:000432837100011
Scopus: 2-s2.0-85047239741
OpenAlex: W2803126585
Citing:
DB Citing
Scopus 12
OpenAlex 16
Web of science 12
Altmetrics: