Asymptotics and Arithmetical Properties of Complexity for Circulant Graphs Full article
Journal |
Doklady Mathematics
ISSN: 1064-5624 , E-ISSN: 1531-8362 |
||||
---|---|---|---|---|---|
Output data | Year: 2018, Volume: 97, Number: 2, Pages: 147-151 Pages count : 5 DOI: 10.1134/S1064562418020138 | ||||
Authors |
|
||||
Affiliations |
|
Abstract:
Abstract—We study analytical and arithmetical properties of the complexity function for infinite families of circulant Cn(s1, s2,…, sk) C2n(s1, s2,…, sk, n). Exact analytical formulas for the complexity functions of these families are derived, and their asymptotics are found. As a consequence, we show that the thermodynamic limit of these families of graphs coincides with the small Mahler measure of the accompanying Laurent polynomials. © 2018, Pleiades Publishing, Ltd.
Cite:
Mednykh A.D.
, Mednykh I.A.
Asymptotics and Arithmetical Properties of Complexity for Circulant Graphs
Doklady Mathematics. 2018. V.97. N2. P.147-151. DOI: 10.1134/S1064562418020138 WOS Scopus OpenAlex
Asymptotics and Arithmetical Properties of Complexity for Circulant Graphs
Doklady Mathematics. 2018. V.97. N2. P.147-151. DOI: 10.1134/S1064562418020138 WOS Scopus OpenAlex
Identifiers:
Web of science: | WOS:000432837100011 |
Scopus: | 2-s2.0-85047239741 |
OpenAlex: | W2803126585 |