Sciact
  • EN
  • RU

Asymptotics and Arithmetical Properties of Complexity for Circulant Graphs Научная публикация

Журнал Doklady Mathematics
ISSN: 1064-5624 , E-ISSN: 1531-8362
Вых. Данные Год: 2018, Том: 97, Номер: 2, Страницы: 147-151 Страниц : 5 DOI: 10.1134/S1064562418020138
Авторы Mednykh A.D. 1,2 , Mednykh I.A. 1,2
Организации
1 Sobolev Institute of Mathematics, Siberian Branch, Russian Academy of Sciences, Novosibirsk, 630090, Russian Federation
2 Novosibirsk State University, Novosibirsk, 630090, Russian Federation

Реферат: Abstract—We study analytical and arithmetical properties of the complexity function for infinite families of circulant Cn(s1, s2,…, sk) C2n(s1, s2,…, sk, n). Exact analytical formulas for the complexity functions of these families are derived, and their asymptotics are found. As a consequence, we show that the thermodynamic limit of these families of graphs coincides with the small Mahler measure of the accompanying Laurent polynomials. © 2018, Pleiades Publishing, Ltd.
Библиографическая ссылка: Mednykh A.D. , Mednykh I.A.
Asymptotics and Arithmetical Properties of Complexity for Circulant Graphs
Doklady Mathematics. 2018. V.97. N2. P.147-151. DOI: 10.1134/S1064562418020138 WOS Scopus OpenAlex
Идентификаторы БД:
Web of science: WOS:000432837100011
Scopus: 2-s2.0-85047239741
OpenAlex: W2803126585
Цитирование в БД:
БД Цитирований
Scopus 12
OpenAlex 16
Web of science 12
Альметрики: