Asymptotics and Arithmetical Properties of Complexity for Circulant Graphs Научная публикация
Журнал |
Doklady Mathematics
ISSN: 1064-5624 , E-ISSN: 1531-8362 |
||||
---|---|---|---|---|---|
Вых. Данные | Год: 2018, Том: 97, Номер: 2, Страницы: 147-151 Страниц : 5 DOI: 10.1134/S1064562418020138 | ||||
Авторы |
|
||||
Организации |
|
Реферат:
Abstract—We study analytical and arithmetical properties of the complexity function for infinite families of circulant Cn(s1, s2,…, sk) C2n(s1, s2,…, sk, n). Exact analytical formulas for the complexity functions of these families are derived, and their asymptotics are found. As a consequence, we show that the thermodynamic limit of these families of graphs coincides with the small Mahler measure of the accompanying Laurent polynomials. © 2018, Pleiades Publishing, Ltd.
Библиографическая ссылка:
Mednykh A.D.
, Mednykh I.A.
Asymptotics and Arithmetical Properties of Complexity for Circulant Graphs
Doklady Mathematics. 2018. V.97. N2. P.147-151. DOI: 10.1134/S1064562418020138 WOS Scopus OpenAlex
Asymptotics and Arithmetical Properties of Complexity for Circulant Graphs
Doklady Mathematics. 2018. V.97. N2. P.147-151. DOI: 10.1134/S1064562418020138 WOS Scopus OpenAlex
Идентификаторы БД:
Web of science: | WOS:000432837100011 |
Scopus: | 2-s2.0-85047239741 |
OpenAlex: | W2803126585 |