The height of faces of 3-polytopes Научная публикация
Журнал |
Siberian Mathematical Journal
ISSN: 0037-4466 , E-ISSN: 1573-9260 |
||||
---|---|---|---|---|---|
Вых. Данные | Год: 2017, Том: 58, Номер: 1, Страницы: 37-42 Страниц : 6 DOI: 10.1134/S0037446617010050 | ||||
Ключевые слова | plane map, planar graph, 3-polytope, structure properties, height of face | ||||
Авторы |
|
||||
Организации |
|
Реферат:
The height of a face in a 3-polytope is the maximum degree of the incident vertices of the face, and the height of a 3-polytope, h, is the minimum height of its faces. A face is pyramidal if it is either a 4-face incident with three 3-vertices, or a 3-face incident with two vertices of degree at most 4. If pyramidal faces are allowed, then h can be arbitrarily large; so we assume the absence of pyramidal faces. In 1940, Lebesgue proved that every quadrangulated 3-polytope has h ≤ 11. In 1995, this bound was lowered by Avgustinovich and Borodin to 10. Recently, we improved it to the sharp bound 8. For plane triangulation without 4-vertices, Borodin (1992), confirming the Kotzig conjecture of 1979, proved that h ≤ 20 which bound is sharp. Later, Borodin (1998) proved that h ≤ 20 for all triangulated 3-polytopes. Recently, we obtained the sharp bound 10 for triangle-free 3-polytopes. In 1996, Horňák and Jendrol’ proved for arbitrarily 3-polytopes that h ≤ 23. In this paper we improve this bound to the sharp bound 20. © 2017, Pleiades Publishing, Ltd.
Библиографическая ссылка:
Borodin O.V.
, Ivanova A.O.
The height of faces of 3-polytopes
Siberian Mathematical Journal. 2017. V.58. N1. P.37-42. DOI: 10.1134/S0037446617010050 WOS Scopus OpenAlex
The height of faces of 3-polytopes
Siberian Mathematical Journal. 2017. V.58. N1. P.37-42. DOI: 10.1134/S0037446617010050 WOS Scopus OpenAlex
Идентификаторы БД:
Web of science: | WOS:000396065100005 |
Scopus: | 2-s2.0-85014722960 |
OpenAlex: | W2593361153 |