Sciact
  • EN
  • RU

Kulakov Algebraic Systems on Groups Full article

Journal Siberian Mathematical Journal
ISSN: 0037-4466 , E-ISSN: 1573-9260
Output data Year: 2021, Volume: 62, Number: 6, Pages: 1100-1109 Pages count : 10 DOI: 10.1134/S0037446621060112
Tags 512.74:512.643.8; group; groupoid; Kulakov algebraic system; loop; physical structure; semigroup; three-sorted algebra
Authors Neshchadim M.V. 1,2 , Simonov A.A. 2
Affiliations
1 Sobolev Institute of Mathematics, Novosibirsk, Russian Federation
2 Novosibirsk State University, Novosibirsk, Russian Federation

Abstract: We define a Kulakov algebraic systemas a three-sorted algebraic systemsatisfying the axioms of a physical structure.We prove a strong version of Ionin’s Theoremon the equivalence of the rank $ (2,2) $physical structureto the structure of an abstract group.We consider nongroup Kulakov algebraic systems andcharacterize Kulakov algebraic systems over arbitrary groups. © 2021, Pleiades Publishing, Ltd.
Cite: Neshchadim M.V. , Simonov A.A.
Kulakov Algebraic Systems on Groups
Siberian Mathematical Journal. 2021. V.62. N6. P.1100-1109. DOI: 10.1134/S0037446621060112 WOS Scopus OpenAlex
Identifiers:
Web of science: WOS:000723707400011
Scopus: 2-s2.0-85120168165
OpenAlex: W3217472451
Citing:
DB Citing
Scopus 3
OpenAlex 3
Altmetrics: