Kulakov Algebraic Systems on Groups Научная публикация
Журнал |
Siberian Mathematical Journal
ISSN: 0037-4466 , E-ISSN: 1573-9260 |
||||
---|---|---|---|---|---|
Вых. Данные | Год: 2021, Том: 62, Номер: 6, Страницы: 1100-1109 Страниц : 10 DOI: 10.1134/S0037446621060112 | ||||
Ключевые слова | 512.74:512.643.8; group; groupoid; Kulakov algebraic system; loop; physical structure; semigroup; three-sorted algebra | ||||
Авторы |
|
||||
Организации |
|
Реферат:
We define a Kulakov algebraic systemas a three-sorted algebraic systemsatisfying the axioms of a physical structure.We prove a strong version of Ionin’s Theoremon the equivalence of the rank $ (2,2) $physical structureto the structure of an abstract group.We consider nongroup Kulakov algebraic systems andcharacterize Kulakov algebraic systems over arbitrary groups. © 2021, Pleiades Publishing, Ltd.
Библиографическая ссылка:
Neshchadim M.V.
, Simonov A.A.
Kulakov Algebraic Systems on Groups
Siberian Mathematical Journal. 2021. V.62. N6. P.1100-1109. DOI: 10.1134/S0037446621060112 WOS Scopus OpenAlex
Kulakov Algebraic Systems on Groups
Siberian Mathematical Journal. 2021. V.62. N6. P.1100-1109. DOI: 10.1134/S0037446621060112 WOS Scopus OpenAlex
Идентификаторы БД:
Web of science: | WOS:000723707400011 |
Scopus: | 2-s2.0-85120168165 |
OpenAlex: | W3217472451 |