Sciact
  • EN
  • RU

Embedding in q-ary 1-perfect codes and partitions Full article

Journal Discrete Mathematics
ISSN: 0012-365X , E-ISSN: 1872-681X
Output data Year: 2015, Volume: 338, Number: 11, Pages: 1856-1859 Pages count : 4 DOI: 10.1016/j.disc.2015.04.014
Tags Embedding, q-ary code, 1-code, 1-perfect code, Partitions, Hamming code
Authors Krotov D.S. 1,2 , Sotnikova E.V. 1
Affiliations
1 Sobolev Institute of Mathematics, 4 Acad. Koptyug avenue, 630090, Novosibirsk, Russia
2 Novosibirsk State University, 2 Pirogova street, 630090, Novosibirsk, Russia

Abstract: It is proved that every 1-error-correcting code over a finite field can be embedded in a 1-perfect code of some larger length. Embedding in this context means that the original code is a subcode of the resulting 1-perfect code and can be obtained from it by repeated shortening. Further, the result is generalized to partitions: every partition of the Hamming space into 1-error-correcting codes can be embedded in a partition of a space of some larger dimension into 1-perfect codes. For the partitions, the embedding length is close to the theoretical bound for the general case and optimal for the binary case.
Cite: Krotov D.S. , Sotnikova E.V.
Embedding in q-ary 1-perfect codes and partitions
Discrete Mathematics. 2015. V.338. N11. P.1856-1859. DOI: 10.1016/j.disc.2015.04.014 WOS Scopus РИНЦ OpenAlex
Dates:
Submitted: Dec 15, 2014
Accepted: Apr 13, 2015
Published online: Jun 5, 2015
Identifiers:
Web of science: WOS:000358459300003
Scopus: 2-s2.0-84930686196
Elibrary: 24046230
OpenAlex: W1875081033
Citing:
DB Citing
Web of science 4
Scopus 5
Elibrary 6
OpenAlex 4
Altmetrics: