Embedding in q-ary 1-perfect codes and partitions Научная публикация
| Журнал |
Discrete Mathematics
ISSN: 0012-365X , E-ISSN: 1872-681X |
||||
|---|---|---|---|---|---|
| Вых. Данные | Год: 2015, Том: 338, Номер: 11, Страницы: 1856-1859 Страниц : 4 DOI: 10.1016/j.disc.2015.04.014 | ||||
| Ключевые слова | Embedding, q-ary code, 1-code, 1-perfect code, Partitions, Hamming code | ||||
| Авторы |
|
||||
| Организации |
|
Реферат:
It is proved that every 1-error-correcting code over a finite field can be embedded in a 1-perfect code of some larger length. Embedding in this context means that the original code is a subcode of the resulting 1-perfect code and can be obtained from it by repeated shortening. Further, the result is generalized to partitions: every partition of the Hamming space into 1-error-correcting codes can be embedded in a partition of a space of some larger dimension into 1-perfect codes. For the partitions, the embedding length is close to the theoretical bound for the general case and optimal for the binary case.
Библиографическая ссылка:
Krotov D.S.
, Sotnikova E.V.
Embedding in q-ary 1-perfect codes and partitions
Discrete Mathematics. 2015. V.338. N11. P.1856-1859. DOI: 10.1016/j.disc.2015.04.014 WOS Scopus РИНЦ OpenAlex
Embedding in q-ary 1-perfect codes and partitions
Discrete Mathematics. 2015. V.338. N11. P.1856-1859. DOI: 10.1016/j.disc.2015.04.014 WOS Scopus РИНЦ OpenAlex
Даты:
| Поступила в редакцию: | 15 дек. 2014 г. |
| Принята к публикации: | 13 апр. 2015 г. |
| Опубликована online: | 5 июн. 2015 г. |
Идентификаторы БД:
| Web of science: | WOS:000358459300003 |
| Scopus: | 2-s2.0-84930686196 |
| РИНЦ: | 24046230 |
| OpenAlex: | W1875081033 |