Sciact
  • EN
  • RU

Embedding in q-ary 1-perfect codes and partitions Научная публикация

Журнал Discrete Mathematics
ISSN: 0012-365X , E-ISSN: 1872-681X
Вых. Данные Год: 2015, Том: 338, Номер: 11, Страницы: 1856-1859 Страниц : 4 DOI: 10.1016/j.disc.2015.04.014
Ключевые слова Embedding, q-ary code, 1-code, 1-perfect code, Partitions, Hamming code
Авторы Krotov D.S. 1,2 , Sotnikova E.V. 1
Организации
1 Sobolev Institute of Mathematics, 4 Acad. Koptyug avenue, 630090, Novosibirsk, Russia
2 Novosibirsk State University, 2 Pirogova street, 630090, Novosibirsk, Russia

Реферат: It is proved that every 1-error-correcting code over a finite field can be embedded in a 1-perfect code of some larger length. Embedding in this context means that the original code is a subcode of the resulting 1-perfect code and can be obtained from it by repeated shortening. Further, the result is generalized to partitions: every partition of the Hamming space into 1-error-correcting codes can be embedded in a partition of a space of some larger dimension into 1-perfect codes. For the partitions, the embedding length is close to the theoretical bound for the general case and optimal for the binary case.
Библиографическая ссылка: Krotov D.S. , Sotnikova E.V.
Embedding in q-ary 1-perfect codes and partitions
Discrete Mathematics. 2015. V.338. N11. P.1856-1859. DOI: 10.1016/j.disc.2015.04.014 WOS Scopus РИНЦ OpenAlex
Даты:
Поступила в редакцию: 15 дек. 2014 г.
Принята к публикации: 13 апр. 2015 г.
Опубликована online: 5 июн. 2015 г.
Идентификаторы БД:
Web of science: WOS:000358459300003
Scopus: 2-s2.0-84930686196
РИНЦ: 24046230
OpenAlex: W1875081033
Цитирование в БД:
БД Цитирований
Web of science 4
Scopus 5
РИНЦ 6
OpenAlex 4
Альметрики: