Sciact
  • EN
  • RU

The Closures of Wreath Products in Product Action Full article

Journal Algebra and Logic
ISSN: 0002-5232 , E-ISSN: 1573-8302
Output data Year: 2021, Volume: 60, Number: 3, Pages: 188-195 Pages count : 8 DOI: 10.1007/s10469-021-09640-0
Tags (1, 1)-superalgebra; left-symmetric algebra; Pierce decomposition; pre-Lie algebra; prime ring; right-symmetric ring
Authors Vasil’ev A.V. 1,2 , Ponomarenko I.N. 1,3
Affiliations
1 Sobolev Institute of Mathematics, Novosibirsk, Russian Federation
2 Novosibirsk State University, Novosibirsk, Russian Federation
3 Санкт-Петербургское отделение Математического института им. В. А. Стеклова РАН

Abstract: Let m be a positive integer and let Ω be a finite set. The m-closure of G ≤ Sym(Ω) is the largest permutation group G(m) on Ω having the same orbits as G in its induced action on the Cartesian product Ωm. An exact formula for the m-closure of the wreath product in product action is given. As a corollary, a sufficient condition is obtained for this m-closure to be included in the wreath product of the m-closures of the factors. © 2021, Springer Science+Business Media, LLC, part of Springer Nature.
Cite: Vasil’ev A.V. , Ponomarenko I.N.
The Closures of Wreath Products in Product Action
Algebra and Logic. 2021. V.60. N3. P.188-195. DOI: 10.1007/s10469-021-09640-0 WOS Scopus OpenAlex
Identifiers:
Web of science: WOS:000714533400008
Scopus: 2-s2.0-85118576704
OpenAlex: W4205872934
Citing:
DB Citing
Scopus 2
OpenAlex 3
Web of science 2
Altmetrics: