The Closures of Wreath Products in Product Action Научная публикация
Журнал |
Algebra and Logic
ISSN: 0002-5232 , E-ISSN: 1573-8302 |
||||||
---|---|---|---|---|---|---|---|
Вых. Данные | Год: 2021, Том: 60, Номер: 3, Страницы: 188-195 Страниц : 8 DOI: 10.1007/s10469-021-09640-0 | ||||||
Ключевые слова | (1, 1)-superalgebra; left-symmetric algebra; Pierce decomposition; pre-Lie algebra; prime ring; right-symmetric ring | ||||||
Авторы |
|
||||||
Организации |
|
Реферат:
Let m be a positive integer and let Ω be a finite set. The m-closure of G ≤ Sym(Ω) is the largest permutation group G(m) on Ω having the same orbits as G in its induced action on the Cartesian product Ωm. An exact formula for the m-closure of the wreath product in product action is given. As a corollary, a sufficient condition is obtained for this m-closure to be included in the wreath product of the m-closures of the factors. © 2021, Springer Science+Business Media, LLC, part of Springer Nature.
Библиографическая ссылка:
Vasil’ev A.V.
, Ponomarenko I.N.
The Closures of Wreath Products in Product Action
Algebra and Logic. 2021. V.60. N3. P.188-195. DOI: 10.1007/s10469-021-09640-0 WOS Scopus OpenAlex
The Closures of Wreath Products in Product Action
Algebra and Logic. 2021. V.60. N3. P.188-195. DOI: 10.1007/s10469-021-09640-0 WOS Scopus OpenAlex
Идентификаторы БД:
Web of science: | WOS:000714533400008 |
Scopus: | 2-s2.0-85118576704 |
OpenAlex: | W4205872934 |