On WL-Rank and WL-Dimension of Some Deza Circulant Graphs Full article
Journal |
Graphs and Combinatorics
ISSN: 0911-0119 , E-ISSN: 1435-5914 |
||||
---|---|---|---|---|---|
Output data | Year: 2021, Volume: 37, Number: 6, Pages: 2397-2421 Pages count : 25 DOI: 10.1007/s00373-021-02364-z | ||||
Tags | Circulant graphs; Deza graphs; WL-dimension; WL-rank | ||||
Authors |
|
||||
Affiliations |
|
Funding (1)
1 |
Министерство науки и высшего образования РФ Mathematical Center in Akademgorodok |
075-15-2019-1613, 075-15-2022-281 |
Abstract:
The WL-rank of a digraph Γ is defined to be the rank of the coherent configuration of Γ. The WL-dimension of Γ is defined to be the smallest positive integer m for which Γ is identified by the m-dimensional Weisfeiler–Leman algorithm. We classify the Deza circulant graphs of WL-rank 4. In additional, it is proved that each of these graphs has WL-dimension at most 3. Finally, we establish that some families of Deza circulant graphs have WL-rank 5 or 6 and WL-dimension at most 3. © 2021, The Author(s), under exclusive licence to Springer Japan KK, part of Springer Nature.
Cite:
Bildanov R.
, Panshin V.
, Ryabov G.
On WL-Rank and WL-Dimension of Some Deza Circulant Graphs
Graphs and Combinatorics. 2021. V.37. N6. P.2397-2421. DOI: 10.1007/s00373-021-02364-z WOS Scopus OpenAlex
On WL-Rank and WL-Dimension of Some Deza Circulant Graphs
Graphs and Combinatorics. 2021. V.37. N6. P.2397-2421. DOI: 10.1007/s00373-021-02364-z WOS Scopus OpenAlex
Identifiers:
Web of science: | WOS:000668432900001 |
Scopus: | 2-s2.0-85119237438 |
OpenAlex: | W3179526543 |