Sciact
  • EN
  • RU

On WL-Rank and WL-Dimension of Some Deza Circulant Graphs Full article

Journal Graphs and Combinatorics
ISSN: 0911-0119 , E-ISSN: 1435-5914
Output data Year: 2021, Volume: 37, Number: 6, Pages: 2397-2421 Pages count : 25 DOI: 10.1007/s00373-021-02364-z
Tags Circulant graphs; Deza graphs; WL-dimension; WL-rank
Authors Bildanov R. 1 , Panshin V. 1 , Ryabov G. 1,2
Affiliations
1 Novosibirsk State University, Novosibirsk, Russian Federation
2 Sobolev Institute of Mathematics, Novosibirsk, Russian Federation

Funding (1)

1 Министерство науки и высшего образования РФ
Mathematical Center in Akademgorodok
075-15-2019-1613, 075-15-2022-281

Abstract: The WL-rank of a digraph Γ is defined to be the rank of the coherent configuration of Γ. The WL-dimension of Γ is defined to be the smallest positive integer m for which Γ is identified by the m-dimensional Weisfeiler–Leman algorithm. We classify the Deza circulant graphs of WL-rank 4. In additional, it is proved that each of these graphs has WL-dimension at most 3. Finally, we establish that some families of Deza circulant graphs have WL-rank 5 or 6 and WL-dimension at most 3. © 2021, The Author(s), under exclusive licence to Springer Japan KK, part of Springer Nature.
Cite: Bildanov R. , Panshin V. , Ryabov G.
On WL-Rank and WL-Dimension of Some Deza Circulant Graphs
Graphs and Combinatorics. 2021. V.37. N6. P.2397-2421. DOI: 10.1007/s00373-021-02364-z WOS Scopus OpenAlex
Identifiers:
Web of science: WOS:000668432900001
Scopus: 2-s2.0-85119237438
OpenAlex: W3179526543
Citing:
DB Citing
Scopus 3
OpenAlex 2
Web of science 3
Altmetrics: