On WL-Rank and WL-Dimension of Some Deza Circulant Graphs Научная публикация
Журнал |
Graphs and Combinatorics
ISSN: 0911-0119 , E-ISSN: 1435-5914 |
||||
---|---|---|---|---|---|
Вых. Данные | Год: 2021, Том: 37, Номер: 6, Страницы: 2397-2421 Страниц : 25 DOI: 10.1007/s00373-021-02364-z | ||||
Ключевые слова | Circulant graphs; Deza graphs; WL-dimension; WL-rank | ||||
Авторы |
|
||||
Организации |
|
Информация о финансировании (1)
1 |
Министерство науки и высшего образования РФ Математический центр в Академгородке (ИМ СО РАН) |
075-15-2019-1613, 075-15-2022-281 |
Реферат:
The WL-rank of a digraph Γ is defined to be the rank of the coherent configuration of Γ. The WL-dimension of Γ is defined to be the smallest positive integer m for which Γ is identified by the m-dimensional Weisfeiler–Leman algorithm. We classify the Deza circulant graphs of WL-rank 4. In additional, it is proved that each of these graphs has WL-dimension at most 3. Finally, we establish that some families of Deza circulant graphs have WL-rank 5 or 6 and WL-dimension at most 3. © 2021, The Author(s), under exclusive licence to Springer Japan KK, part of Springer Nature.
Библиографическая ссылка:
Bildanov R.
, Panshin V.
, Ryabov G.
On WL-Rank and WL-Dimension of Some Deza Circulant Graphs
Graphs and Combinatorics. 2021. V.37. N6. P.2397-2421. DOI: 10.1007/s00373-021-02364-z WOS Scopus OpenAlex
On WL-Rank and WL-Dimension of Some Deza Circulant Graphs
Graphs and Combinatorics. 2021. V.37. N6. P.2397-2421. DOI: 10.1007/s00373-021-02364-z WOS Scopus OpenAlex
Идентификаторы БД:
Web of science: | WOS:000668432900001 |
Scopus: | 2-s2.0-85119237438 |
OpenAlex: | W3179526543 |