Sciact
  • EN
  • RU

On the spectrum of Hamiltonian cycles in the n-cube Full article

Journal Journal of Combinatorial Theory. Series B
ISSN: 0095-8956 , E-ISSN: 1096-0902
Output data Year: 2021, Volume: 151, Pages: 435-464 Pages count : 30 DOI: 10.1016/j.jctb.2021.08.002
Tags Boolean cube; Edge direction spectrum; Gray code; Hamiltonian cycle
Authors Perezhogin A.L. 1
Affiliations
1 Sobolev Institute of Mathematics, pr. Koptyuga, 4, Novosibirsk, 630090, Russian Federation

Abstract: The spectrum of a Hamiltonian cycle (Gray code) in a Boolean n-cube is a sequence of n numbers, where the ith number is equal to the number of edges of the ith direction in the cycle. Necessary conditions for the existence of a Gray code with a given spectrum are known: all numbers are even and the sum of any k numbers is at least 2k, k=1,…,n. It is proved that for all dimensions n these necessary conditions are sufficient for the existence of a Gray code with the given spectrum. © 2021 Elsevier Inc.
Cite: Perezhogin A.L.
On the spectrum of Hamiltonian cycles in the n-cube
Journal of Combinatorial Theory. Series B. 2021. V.151. P.435-464. DOI: 10.1016/j.jctb.2021.08.002 WOS Scopus РИНЦ OpenAlex
Dates:
Submitted: Sep 9, 2020
Published online: Aug 27, 2021
Identifiers:
Web of science: WOS:000702280800018
Scopus: 2-s2.0-85113497712
Elibrary: 46958895
OpenAlex: W3196332366
Citing:
DB Citing
Scopus 1
Web of science 1
OpenAlex 2
Altmetrics: