Sciact
  • EN
  • RU

On the spectrum of Hamiltonian cycles in the n-cube Научная публикация

Журнал Journal of Combinatorial Theory. Series B
ISSN: 0095-8956 , E-ISSN: 1096-0902
Вых. Данные Год: 2021, Том: 151, Страницы: 435-464 Страниц : 30 DOI: 10.1016/j.jctb.2021.08.002
Ключевые слова Boolean cube; Edge direction spectrum; Gray code; Hamiltonian cycle
Авторы Perezhogin A.L. 1
Организации
1 Sobolev Institute of Mathematics, pr. Koptyuga, 4, Novosibirsk, 630090, Russian Federation

Реферат: The spectrum of a Hamiltonian cycle (Gray code) in a Boolean n-cube is a sequence of n numbers, where the ith number is equal to the number of edges of the ith direction in the cycle. Necessary conditions for the existence of a Gray code with a given spectrum are known: all numbers are even and the sum of any k numbers is at least 2k, k=1,…,n. It is proved that for all dimensions n these necessary conditions are sufficient for the existence of a Gray code with the given spectrum. © 2021 Elsevier Inc.
Библиографическая ссылка: Perezhogin A.L.
On the spectrum of Hamiltonian cycles in the n-cube
Journal of Combinatorial Theory. Series B. 2021. V.151. P.435-464. DOI: 10.1016/j.jctb.2021.08.002 WOS Scopus РИНЦ OpenAlex
Даты:
Поступила в редакцию: 9 сент. 2020 г.
Опубликована online: 27 авг. 2021 г.
Идентификаторы БД:
Web of science: WOS:000702280800018
Scopus: 2-s2.0-85113497712
РИНЦ: 46958895
OpenAlex: W3196332366
Цитирование в БД:
БД Цитирований
Scopus 1
Web of science 1
OpenAlex 2
Альметрики: