On the spectrum of Hamiltonian cycles in the n-cube Научная публикация
Журнал |
Journal of Combinatorial Theory. Series B
ISSN: 0095-8956 , E-ISSN: 1096-0902 |
||
---|---|---|---|
Вых. Данные | Год: 2021, Том: 151, Страницы: 435-464 Страниц : 30 DOI: 10.1016/j.jctb.2021.08.002 | ||
Ключевые слова | Boolean cube; Edge direction spectrum; Gray code; Hamiltonian cycle | ||
Авторы |
|
||
Организации |
|
Реферат:
The spectrum of a Hamiltonian cycle (Gray code) in a Boolean n-cube is a sequence of n numbers, where the ith number is equal to the number of edges of the ith direction in the cycle. Necessary conditions for the existence of a Gray code with a given spectrum are known: all numbers are even and the sum of any k numbers is at least 2k, k=1,…,n. It is proved that for all dimensions n these necessary conditions are sufficient for the existence of a Gray code with the given spectrum. © 2021 Elsevier Inc.
Библиографическая ссылка:
Perezhogin A.L.
On the spectrum of Hamiltonian cycles in the n-cube
Journal of Combinatorial Theory. Series B. 2021. V.151. P.435-464. DOI: 10.1016/j.jctb.2021.08.002 WOS Scopus РИНЦ OpenAlex
On the spectrum of Hamiltonian cycles in the n-cube
Journal of Combinatorial Theory. Series B. 2021. V.151. P.435-464. DOI: 10.1016/j.jctb.2021.08.002 WOS Scopus РИНЦ OpenAlex
Даты:
Поступила в редакцию: | 9 сент. 2020 г. |
Опубликована online: | 27 авг. 2021 г. |
Идентификаторы БД:
Web of science: | WOS:000702280800018 |
Scopus: | 2-s2.0-85113497712 |
РИНЦ: | 46958895 |
OpenAlex: | W3196332366 |