The Polynomials of Prime Virtual Knots of Genus 1 and Complexity at Most 5 Full article
Journal |
Siberian Mathematical Journal
ISSN: 0037-4466 , E-ISSN: 1573-9260 |
||||||
---|---|---|---|---|---|---|---|
Output data | Year: 2020, Volume: 61, Number: 6, Pages: 994-1001 Pages count : 8 DOI: 10.1134/S003744662006004X | ||||||
Tags | 515.162.8; affine index polynomial; knot in a thickened torus; virtual knot | ||||||
Authors |
|
||||||
Affiliations |
|
Abstract:
Akimova and Matveev classified the prime virtual knots of genus 1 which admit diagrams with at most 5 classicalcrossings in 2017. In 2018,Kaur, Prabhakar, and Vesnin introduced the families of the $ L $- and$ F $-polynomials of virtual knots generalizing the Kauffman affine index polynomial.We introduce the notion of a totally flat-trivial virtual knot. We provethat the $ L $- and $ F $-polynomials for these knots coincide with the affine indexpolynomial. Also, we establish that all Akimova–Matveev knots are totally flat-trivialand calculate their affine index polynomials. © 2020, Pleiades Publishing, Ltd.
Cite:
Vesnin A.Y.
, Ivanov M.E.
The Polynomials of Prime Virtual Knots of Genus 1 and Complexity at Most 5
Siberian Mathematical Journal. 2020. V.61. N6. P.994-1001. DOI: 10.1134/S003744662006004X WOS Scopus OpenAlex
The Polynomials of Prime Virtual Knots of Genus 1 and Complexity at Most 5
Siberian Mathematical Journal. 2020. V.61. N6. P.994-1001. DOI: 10.1134/S003744662006004X WOS Scopus OpenAlex
Identifiers:
Web of science: | WOS:000608907600004 |
Scopus: | 2-s2.0-85100134133 |
OpenAlex: | W3111011896 |