Sciact
  • EN
  • RU

The Polynomials of Prime Virtual Knots of Genus 1 and Complexity at Most 5 Full article

Journal Siberian Mathematical Journal
ISSN: 0037-4466 , E-ISSN: 1573-9260
Output data Year: 2020, Volume: 61, Number: 6, Pages: 994-1001 Pages count : 8 DOI: 10.1134/S003744662006004X
Tags 515.162.8; affine index polynomial; knot in a thickened torus; virtual knot
Authors Vesnin A.Y. 1,2,3 , Ivanov M.E. 1
Affiliations
1 Laboratory of Topology and Dynamics, Novosibirsk State University, Novosibirsk, Russian Federation
2 Sobolev Institute of Mathematics, Novosibirsk, Russian Federation
3 Tomsk, Russian Federation

Abstract: Akimova and Matveev classified the prime virtual knots of genus 1 which admit diagrams with at most 5 classicalcrossings in 2017. In 2018,Kaur, Prabhakar, and Vesnin introduced the families of the $ L $- and$ F $-polynomials of virtual knots generalizing the Kauffman affine index polynomial.We introduce the notion of a totally flat-trivial virtual knot. We provethat the $ L $- and $ F $-polynomials for these knots coincide with the affine indexpolynomial. Also, we establish that all Akimova–Matveev knots are totally flat-trivialand calculate their affine index polynomials. © 2020, Pleiades Publishing, Ltd.
Cite: Vesnin A.Y. , Ivanov M.E.
The Polynomials of Prime Virtual Knots of Genus 1 and Complexity at Most 5
Siberian Mathematical Journal. 2020. V.61. N6. P.994-1001. DOI: 10.1134/S003744662006004X WOS Scopus OpenAlex
Identifiers:
Web of science: WOS:000608907600004
Scopus: 2-s2.0-85100134133
OpenAlex: W3111011896
Citing:
DB Citing
Scopus 1
OpenAlex 1
Web of science 1
Altmetrics: