Sciact
  • EN
  • RU

The Polynomials of Prime Virtual Knots of Genus 1 and Complexity at Most 5 Научная публикация

Журнал Siberian Mathematical Journal
ISSN: 0037-4466 , E-ISSN: 1573-9260
Вых. Данные Год: 2020, Том: 61, Номер: 6, Страницы: 994-1001 Страниц : 8 DOI: 10.1134/S003744662006004X
Ключевые слова 515.162.8; affine index polynomial; knot in a thickened torus; virtual knot
Авторы Vesnin A.Y. 1,2,3 , Ivanov M.E. 1
Организации
1 Laboratory of Topology and Dynamics, Novosibirsk State University, Novosibirsk, Russian Federation
2 Sobolev Institute of Mathematics, Novosibirsk, Russian Federation
3 Tomsk, Russian Federation

Реферат: Akimova and Matveev classified the prime virtual knots of genus 1 which admit diagrams with at most 5 classicalcrossings in 2017. In 2018,Kaur, Prabhakar, and Vesnin introduced the families of the $ L $- and$ F $-polynomials of virtual knots generalizing the Kauffman affine index polynomial.We introduce the notion of a totally flat-trivial virtual knot. We provethat the $ L $- and $ F $-polynomials for these knots coincide with the affine indexpolynomial. Also, we establish that all Akimova–Matveev knots are totally flat-trivialand calculate their affine index polynomials. © 2020, Pleiades Publishing, Ltd.
Библиографическая ссылка: Vesnin A.Y. , Ivanov M.E.
The Polynomials of Prime Virtual Knots of Genus 1 and Complexity at Most 5
Siberian Mathematical Journal. 2020. V.61. N6. P.994-1001. DOI: 10.1134/S003744662006004X WOS Scopus OpenAlex
Идентификаторы БД:
Web of science: WOS:000608907600004
Scopus: 2-s2.0-85100134133
OpenAlex: W3111011896
Цитирование в БД:
БД Цитирований
Scopus 1
OpenAlex 1
Web of science 1
Альметрики: