Sciact
  • EN
  • RU

Gröbner-Shirshov basis of the universal enveloping Rota-Baxter algebra of a Lie algebra Full article

Journal Journal of Lie Theory
ISSN: 0949-5932
Output data Year: 2017, Volume: 27, Number: 3, Pages: 887–905 Pages count : 9
Authors Kolesnikov Pavel 1 , Gubarev Vsevolod 1,2
Affiliations
1 Sobolev Institute of Mathematics
2 Novosibirsk State University

Abstract: This paper is devoted to the study of the combinatorial structure of Lie algebras with a Rota-Baxter operator. The main result the authors obtain is an analogue of the Poincaré-Birkhoff-Witt (PBW) Theorem for the universal enveloping Rota-Baxter Lie algebra URB(L) of an arbitrary Lie algebra L.
Cite: Kolesnikov P. , Gubarev V.
Gröbner-Shirshov basis of the universal enveloping Rota-Baxter algebra of a Lie algebra
Journal of Lie Theory. 2017. V.27. N3. P.887–905.
Identifiers: No identifiers
Citing: Пока нет цитирований