Sciact
  • EN
  • RU

Propelinear 1-perfect codes from quadratic functions Full article

Journal IEEE Transactions on Information Theory
ISSN: 0018-9448 , E-ISSN: 1557-9654
Output data Year: 2014, Volume: 60, Number: 4, Pages: 2065-2068 Pages count : 4 DOI: 10.1109/tit.2014.2303158
Tags automorphism group, perfect code, propelinear code, transitive code
Authors Krotov D.S. 1,2 , Potapov V.N. 1,2
Affiliations
1 Sobolev Institute of Mathematics, Novosibirsk 630090, Russia
2 Novosibirsk State University, Novosibirsk 630090, Russia

Abstract: Perfect codes obtained by the Vasil'ev-Schönheim construction from a linear base code and quadratic switching functions are transitive and, moreover, propelinear. This gives at least exp(cN^2) propelinear 1-perfect codes of length N over an arbitrary finite field, while an upper bound on the number of transitive codes is exp(C(N ln N)^2).
Cite: Krotov D.S. , Potapov V.N.
Propelinear 1-perfect codes from quadratic functions
IEEE Transactions on Information Theory. 2014. V.60. N4. P.2065-2068. DOI: 10.1109/tit.2014.2303158 WOS Scopus РИНЦ OpenAlex
Dates:
Submitted: Oct 19, 2013
Accepted: Jan 25, 2014
Published online: Feb 20, 2014
Identifiers:
Web of science: WOS:000333099400006
Scopus: 2-s2.0-84896959380
Elibrary: 21869152
OpenAlex: W2065420897
Citing:
DB Citing
Web of science 6
Scopus 6
Elibrary 6
OpenAlex 8
Altmetrics: