Propelinear 1-perfect codes from quadratic functions Full article
Journal |
IEEE Transactions on Information Theory
ISSN: 0018-9448 , E-ISSN: 1557-9654 |
||||
---|---|---|---|---|---|
Output data | Year: 2014, Volume: 60, Number: 4, Pages: 2065-2068 Pages count : 4 DOI: 10.1109/tit.2014.2303158 | ||||
Tags | automorphism group, perfect code, propelinear code, transitive code | ||||
Authors |
|
||||
Affiliations |
|
Abstract:
Perfect codes obtained by the Vasil'ev-Schönheim construction from a linear base code and quadratic switching functions are transitive and, moreover, propelinear. This gives at least exp(cN^2) propelinear 1-perfect codes of length N over an arbitrary finite field, while an upper bound on the number of transitive codes is exp(C(N ln N)^2).
Cite:
Krotov D.S.
, Potapov V.N.
Propelinear 1-perfect codes from quadratic functions
IEEE Transactions on Information Theory. 2014. V.60. N4. P.2065-2068. DOI: 10.1109/tit.2014.2303158 WOS Scopus РИНЦ OpenAlex
Propelinear 1-perfect codes from quadratic functions
IEEE Transactions on Information Theory. 2014. V.60. N4. P.2065-2068. DOI: 10.1109/tit.2014.2303158 WOS Scopus РИНЦ OpenAlex
Dates:
Submitted: | Oct 19, 2013 |
Accepted: | Jan 25, 2014 |
Published online: | Feb 20, 2014 |
Identifiers:
Web of science: | WOS:000333099400006 |
Scopus: | 2-s2.0-84896959380 |
Elibrary: | 21869152 |
OpenAlex: | W2065420897 |