Sciact
  • EN
  • RU

Spectra of strongly Deza graphs Научная публикация

Журнал Discrete Mathematics
ISSN: 0012-365X , E-ISSN: 1872-681X
Вых. Данные Год: 2021, Том: 344, Номер: 12, Номер статьи : 112622, Страниц : DOI: 10.1016/j.disc.2021.112622
Ключевые слова Cospectral graphs; Deza graph; Distance-regular graph; Divisible design graph; Eigenvalues; Strongly regular graph
Авторы Akbari S. 1 , Haemers W.H. 2 , Hosseinzadeh M.A. 3 , Kabanov V.V. 4 , Konstantinova E.V. 5,6 , Shalaginov L. 4,7
Организации
1 Department of Mathematical Sciences, Sharif University of Technology, Azadi Street, P.O. Box 11155-9415, Tehran, Iran
2 Department of Econometrics and Operations Research, Tilburg University, Tilburg, Netherlands
3 Faculty of Engineering Modern Technologies, Amol University of Special Modern Technologies, Amol, 4616849767, Iran
4 Krasovskii Institute of Mathematics and Mechanics, S. Kovalevskaja st. 16, Yekaterinburg, 620990, Russian Federation
5 Sobolev Institute of Mathematics, Ak. Koptyug av. 4, Novosibirsk, 630090, Russian Federation
6 Novosibisk State University, Pirogova str. 2, Novosibirsk, 630090, Russian Federation
7 Chelyabinsk State University, Brat'ev Kashirinyh st. 129, Chelyabinsk, 454021, Russian Federation

Реферат: A Deza graph G with parameters (n,k,b,a) is a k-regular graph with n vertices such that any two distinct vertices have b or a common neighbours. The children GA and GB of a Deza graph G are defined on the vertex set of G such that every two distinct vertices are adjacent in GA or GB if and only if they have a or b common neighbours, respectively. A strongly Deza graph is a Deza graph with strongly regular children. In this paper we give a spectral characterisation of strongly Deza graphs, show relationships between eigenvalues, and study strongly Deza graphs which are distance-regular.
Библиографическая ссылка: Akbari S. , Haemers W.H. , Hosseinzadeh M.A. , Kabanov V.V. , Konstantinova E.V. , Shalaginov L.
Spectra of strongly Deza graphs
Discrete Mathematics. 2021. V.344. N12. 112622 . DOI: 10.1016/j.disc.2021.112622 WOS Scopus OpenAlex
Идентификаторы БД:
Web of science: WOS:000712876500010
Scopus: 2-s2.0-85114780776
OpenAlex: W3199160409
Цитирование в БД:
БД Цитирований
Scopus 1
OpenAlex 2
Web of science 1
Альметрики: